Deep Learning based Multi-modal Ultrasound-Photoacoustic Imaging

被引:0
作者
Halder, Sumana [1 ]
Patidar, Sankalp [2 ]
Chaudhury, Koel [1 ]
Mandal, Subhamoy [1 ]
机构
[1] Indian Inst Technol Kharagpur, Sch Med Sci & Technol, Kharagpur 721302, W Bengal, India
[2] Indian Inst Technol Kharagpur, Dept Biosci & Biotechnol, Kharagpur, W Bengal, India
来源
PROCEEDINGS OF THE 2024 IEEE SOUTH ASIAN ULTRASONICS SYMPOSIUM, SAUS 2024 | 2024年
关键词
Ultrasound imaging; Photoacoustic imaging; Deep Learning; Functional imaging; Multi-modality;
D O I
10.1109/SAUS61785.2024.10563622
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This study explores the implementation of an artificial intelligence (AI)-assisted multi-modal imaging platform for renal tissue analysis. Leveraging contrast-enhanced ultrasound (CEUS) and photoacoustic (PA) imaging, it provides a comprehensive view of renal tissues. Using deep learning (DL) models like U-Net and nnU-Net, anatomical structures are accurately segmented in medical ultrasound images. Evaluation metrics confirm the effectiveness of DL models. Functional imaging analysis correlates DL predictions with non-linear constrast (NLC) images to understand renal tissue perfusion dynamics. Future work involves using DL predictions for fluence correction in PA images, enhancing tissue absorption accuracy. This multi-modal approach has potential in clinical diagnostics and disease monitoring.
引用
收藏
页数:3
相关论文
共 8 条
  • [1] Fine-Tuning U-Net for Ultrasound Image Segmentation: Different Layers, Different Outcomes
    Amiri, Mina
    Brooks, Rupert
    Rivaz, Hassan
    [J]. IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2020, 67 (12) : 2510 - 2518
  • [2] Carovac Aladin, 2011, Acta Inform Med, V19, P168, DOI 10.5455/aim.2011.19.168-171
  • [3] Contrast-enhanced ultrasonography: advance and current status in abdominal imaging
    Chung, Yong Eun
    Kim, Ki Whang
    [J]. ULTRASONOGRAPHY, 2015, 34 (01) : 3 - 18
  • [4] Simultaneous visualization of tumour oxygenation, neovascularization and contrast agent perfusion by real-time three-dimensional optoacoustic tomography
    Ermolayev, Vladimir
    Dean-Ben, Xose Luis
    Mandal, Subhamoy
    Ntziachristos, Vasilis
    Razansky, Daniel
    [J]. EUROPEAN RADIOLOGY, 2016, 26 (06) : 1843 - 1851
  • [5] Artificial Intelligence Assisted Multi-modal Photoacoustic-Ultrasound Imaging for Studying Renal Tissue Function and Hemodynamics
    Halder, Sumana
    Patidar, Sankalp
    Chaudhury, Koel
    Mandal, Subhamoy
    [J]. 2023 45TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY, EMBC, 2023,
  • [6] nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation
    Isensee, Fabian
    Jaeger, Paul F.
    Kohl, Simon A. A.
    Petersen, Jens
    Maier-Hein, Klaus H.
    [J]. NATURE METHODS, 2021, 18 (02) : 203 - +
  • [7] Whole-Body Photoacoustic Imaging Techniques for Preclinical Small Animal Studies
    Kye, Hyunjun
    Song, Yuon
    Ninjbadgar, Tsedendamba
    Kim, Chulhong
    Kim, Jeesu
    [J]. SENSORS, 2022, 22 (14)
  • [8] Ronneberger O, 2015, Arxiv, DOI [arXiv:1505.04597, 10.48550/arXiv.1505.04597]