Biodegradable zwitterionic polymer-cloaked defective metal-organic frameworks for ferroptosis-inducing cancer therapy

被引:2
作者
Zhang, Minghua [1 ,2 ]
Yao, Xianxian [1 ,2 ]
Xu, Jian [1 ,2 ]
Song, Jiaying [1 ,2 ]
Mai, Shuting [1 ,2 ]
Zhu, Weichu [1 ,2 ]
Zhang, Yichen [1 ,2 ]
Zhu, Liangliang [1 ,2 ]
Yang, Wuli [1 ,2 ]
机构
[1] Fudan Univ, State Key Lab Mol Engn Polymers, 220 Handan Rd, Shanghai 200433, Peoples R China
[2] Fudan Univ, Dept Macromol Sci, 220 Handan Rd, Shanghai 200433, Peoples R China
关键词
Metal -organic frameworks; Zwitterionic polymer; Long circulation; Statins; Ferroptosis; Cancer therapy; CELL-DEATH; IRON; DELIVERY;
D O I
10.1016/j.ijpharm.2024.124032
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Ferroptosis inhibits tumor growth by iron-dependently accumulating lipid peroxides (LPO) to a lethal extent, which can result from iron overload and glutathione peroxidase 4 (GPX4) inactivation. In this study, we developed biodegradable zwitterionic polymer-cloaked atorvastatin (ATV)-loaded ferric metal-organic frameworks (Fe-MOFs) for cancer treatment. Fe-MOFs served as nanoplatforms to co-deliver ferrous ions and ATV to cancer cells; the zwitterionic polymer membrane extended the circulation time of the nanoparticles and increased their accumulation at tumor sites. In cancer cells, the structure of the Fe-MOFs collapsed in the presence of glutathione (GSH), leading to the depletion of GSH and the release of ATV and Fe2+. The released ATV decreased mevalonate biosynthesis and GSH, resulting in GPX4 attenuation. A large number of reactive oxygen species were generated by the Fe2+-triggered Fenton reaction. This synergistic effect ultimately contributed to a lethal accumulation of LPO, causing cancer cell death. The findings both in vitro and in vivo suggested that this ferroptosis-inducing nanoplatform exhibited enhanced anticancer efficacy and preferable biocompatibility, which could provide a feasible strategy for anticancer therapy.
引用
收藏
页数:12
相关论文
共 50 条
[41]   Fe-Based Metal-Organic Frameworks with Ferroptosis Generation Ability for Remodeling Chemotherapy of Non-small Cell Lung Cancer [J].
Luo, Yingli ;
Yu, Xiaoming ;
Yao, Yizhu ;
Zhu, Lin ;
Qin, Wenxiang ;
Shan, Zhuohan ;
Song, Lanlan ;
Wang, Jilong ;
Wang, Liangxing ;
Yan, Hanhan ;
Chen, Mayun .
ACS APPLIED NANO MATERIALS, 2023, 6 (14) :12744-12753
[42]   Building Block Symmetry Relegation Induces Mesopore and Abundant Open-Metal Sites in Metal-Organic Frameworks for Cancer Therapy [J].
Sun, Jing ;
Zhang, Xuan ;
Zhang, Dong ;
Chen, Ying-Pin ;
Wang, Fei ;
Li, Lan ;
Liu, Tian-Fu ;
Yang, Huanghao ;
Song, Jibin ;
Cao, Rong .
CCS CHEMISTRY, 2022, 4 (03) :996-1006
[43]   Rational Design of Metal-Organic Frameworks for Pancreatic Cancer Therapy: from Machine Learning Screening to In Vivo Efficacy [J].
Melle, Francesca ;
Menon, Dhruv ;
Conniot, Joao ;
Ostolaza-Paraiso, Jon ;
Mercado, Sergio ;
Oliveira, Jhenifer ;
Chen, Xu ;
Mendes, Barbara B. ;
Conde, Joao ;
Fairen-Jimenez, David .
ADVANCED MATERIALS, 2025,
[44]   Hydrogen sulfide activatable metal-organic frameworks for Fluorescence Imaging-Guided Photodynamic Therapy of colorectal cancer [J].
Li, Honghui ;
Huang, Mao ;
Wei, Zixuan ;
He, Jiawen ;
Ma, Yunong ;
Lu, Cuixia ;
Jin, Albert ;
Wang, Zhixiong ;
Wen, Liewei .
FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2022, 10
[45]   Metal-Organic Frameworks@Polymer Composites Containing Cyanines for Near-Infrared Fluorescence Imaging and Photothermal Tumor Therapy [J].
Wang, Weiqi ;
Wang, Lei ;
Liu, Shi ;
Xie, Zhigang .
BIOCONJUGATE CHEMISTRY, 2017, 28 (11) :2784-2793
[46]   Hyaluronic acid modified metal-organic frameworks loading cisplatin achieve combined chemodynamic therapy and chemotherapy for lung cancer [J].
Wen, Qian ;
Li, Jianmei ;
Deng, Hongjun ;
Wang, Biqiong ;
Huang, Jingrong ;
Dai, Jie ;
Lu, Yun ;
Zeng, Fancai ;
Chen, Yue ;
Zhao, Ling ;
Fu, Shaozhi .
INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2025, 300
[47]   Microenvironment-driven sequential ferroptosis, photodynamic therapy, and chemotherapy for targeted breast cancer therapy by a cancer-cell-membrane-coated nanoscale metal-organic framework [J].
Pan, Wei-Lun ;
Tan, Yong ;
Meng, Wei ;
Huang, Nai-Han ;
Zhao, Yi-Bang ;
Yu, Zhi-Qiang ;
Huang, Zhong ;
Zhang, Wen-Hua ;
Sun, Bin ;
Chen, Jin-Xiang .
BIOMATERIALS, 2022, 283
[48]   Towards a More Efficient Breast Cancer Therapy Using Active Human Cell Membrane-Coated Metal-Organic Frameworks [J].
Gravan, Pablo ;
Rojas, Sara ;
Picchi, Darina Francesca ;
Galisteo-Gonzalez, Francisco ;
Horcajada, Patricia ;
Marchal, Juan Antonio .
NANOMATERIALS, 2024, 14 (09)
[49]   Tumor microenvironment-activatable oridonin-loaded iron-based metal-organic frameworks for targeting cancer therapy [J].
Zong, Zhihui ;
Xie, Wen ;
Gao, Fangxin ;
Shen, Jingyi ;
Pan, Zhicheng ;
Liang, Lili .
APPLIED ORGANOMETALLIC CHEMISTRY, 2023, 37 (10)
[50]   Metal-organic frameworks-derived bimetallic nanozyme platform enhances cytotoxic effect of photodynamic therapy in hypoxic cancer cells [J].
Han, Xiao ;
Li, Yang ;
Zhou, Ying ;
Song, Zeyu ;
Deng, Yulin ;
Qin, Jieling ;
Jiang, Zhenqi .
MATERIALS & DESIGN, 2021, 204