New distance bounds for quasi-cyclic codes

被引:1
作者
Ozbudak, Ferruh [1 ]
Ozkaya, Buket [2 ]
机构
[1] Sabanci Univ, Dept Math, FENS, Istanbul, Turkiye
[2] Middle East Tech Univ, Inst Appl Math, Ankara, Turkiye
关键词
Quasi-cyclic codes; Minimum distance bounds; Concatenated structure; MINIMUM DISTANCE;
D O I
10.1007/s10623-024-01464-0
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider the minimum weight of codewords in a quasi-cyclic code and characterize the estimate in its most general setup using their concatenated structure. The new bound we derive generalizes the Jensen and G & uuml;neri-& Ouml;zbudak bounds and it holds for the more general class of multilevel concatenated codes.
引用
收藏
页码:3981 / 4009
页数:29
相关论文
共 12 条
[1]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265
[2]  
Dumer II, 1998, HANDBOOK OF CODING THEORY, VOLS I & II, P1911
[3]   A Comparison of Distance Bounds for Quasi-Twisted Codes [J].
Ezerman, Martianus Frederic ;
Lampos, John Mark ;
Ling, San ;
Ozkaya, Buket ;
Tharnnukhroh, Jareena .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (10) :6476-6490
[4]  
Guneri C., 2021, Concise Encyclopedia of Coding Theory
[5]   Structure and performance of generalized quasi-cyclic codes [J].
Guneri, Cem ;
Ozbudak, Ferruh ;
Ozkaya, Buket ;
Sacikara, Elif ;
Sepasdar, Zahra ;
Sole, Patrick .
FINITE FIELDS AND THEIR APPLICATIONS, 2017, 47 :183-202
[6]   The Concatenated Structure of Quasi-Cyclic Codes and an Improvement of Jensen's Bound [J].
Guneri, Cem ;
Ozbudak, Ferruh .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (02) :979-985
[7]   A BOUND ON THE MINIMUM DISTANCE OF QUASI-CYCLIC CODES [J].
Guneri, Cem ;
Ozbudak, Ferruh .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2012, 26 (04) :1781-1796
[8]   THE CONCATENATED STRUCTURE OF CYCLIC AND ABELIAN CODES [J].
JENSEN, JM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1985, 31 (06) :788-793
[9]   On the algebraic structure of quasi-cyclic codes I:: Finite fields [J].
Ling, S ;
Solé, P .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (07) :2751-2760
[10]   A minimum distance bound for quasi-nD-cyclic codes [J].
Ozbudak, Ferruh ;
Ozkaya, Buket .
FINITE FIELDS AND THEIR APPLICATIONS, 2016, 41 :193-222