New distance bounds for quasi-cyclic codes

被引:0
作者
Ozbudak, Ferruh [1 ]
Ozkaya, Buket [2 ]
机构
[1] Sabanci Univ, Dept Math, FENS, Istanbul, Turkiye
[2] Middle East Tech Univ, Inst Appl Math, Ankara, Turkiye
关键词
Quasi-cyclic codes; Minimum distance bounds; Concatenated structure; MINIMUM DISTANCE;
D O I
10.1007/s10623-024-01464-0
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider the minimum weight of codewords in a quasi-cyclic code and characterize the estimate in its most general setup using their concatenated structure. The new bound we derive generalizes the Jensen and G & uuml;neri-& Ouml;zbudak bounds and it holds for the more general class of multilevel concatenated codes.
引用
收藏
页码:3981 / 4009
页数:29
相关论文
共 12 条
  • [1] The Magma algebra system .1. The user language
    Bosma, W
    Cannon, J
    Playoust, C
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) : 235 - 265
  • [2] Dumer II, 1998, HANDBOOK OF CODING THEORY, VOLS I & II, P1911
  • [3] A Comparison of Distance Bounds for Quasi-Twisted Codes
    Ezerman, Martianus Frederic
    Lampos, John Mark
    Ling, San
    Ozkaya, Buket
    Tharnnukhroh, Jareena
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (10) : 6476 - 6490
  • [4] Guneri C., 2021, CONCISE ENCY CODING
  • [5] Structure and performance of generalized quasi-cyclic codes
    Guneri, Cem
    Ozbudak, Ferruh
    Ozkaya, Buket
    Sacikara, Elif
    Sepasdar, Zahra
    Sole, Patrick
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2017, 47 : 183 - 202
  • [6] The Concatenated Structure of Quasi-Cyclic Codes and an Improvement of Jensen's Bound
    Guneri, Cem
    Ozbudak, Ferruh
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (02) : 979 - 985
  • [7] A BOUND ON THE MINIMUM DISTANCE OF QUASI-CYCLIC CODES
    Guneri, Cem
    Ozbudak, Ferruh
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2012, 26 (04) : 1781 - 1796
  • [8] THE CONCATENATED STRUCTURE OF CYCLIC AND ABELIAN CODES
    JENSEN, JM
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1985, 31 (06) : 788 - 793
  • [9] On the algebraic structure of quasi-cyclic codes I:: Finite fields
    Ling, S
    Solé, P
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (07) : 2751 - 2760
  • [10] A minimum distance bound for quasi-nD-cyclic codes
    Ozbudak, Ferruh
    Ozkaya, Buket
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2016, 41 : 193 - 222