Prolonging a discrete time crystal by quantum-classical feedback

被引:1
|
作者
Camacho, Gonzalo [1 ,2 ]
Fauseweh, Benedikt [1 ,2 ]
机构
[1] German Aerosp Ctr DLR, Inst Aerosp Med, Linder Hohe, D-51147 Cologne, Germany
[2] TU Dortmund Univ, Dept Phys, Otto Hahn Str 4, D-44227 Dortmund, Germany
来源
PHYSICAL REVIEW RESEARCH | 2024年 / 6卷 / 03期
关键词
SIMULATIONS; DYNAMICS;
D O I
10.1103/PhysRevResearch.6.033092
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Nonequilibrium phases of quantum matter featuring time crystalline eigenstate order have been realized recently on noisy intermediate-scale quantum (NISQ) devices. While ideal quantum time crystals exhibit collective subharmonic oscillations and spatiotemporal long-range order persisting for infinite times, the decoherence time of current NISQ devices sets a natural limit to the survival of these phases, restricting their observation to a shallow quantum circuit. Here we propose a time-periodic scheme that leverages quantum-classical feedback protocols in subregions of the system to enhance a time crystal signal significantly exceeding the decoherence time of the device. As a case of study, we demonstrate the survival of the many-body localized discrete time crystal phase in the one-dimensional periodically kicked Ising model, accounting for decoherence of the system with an environment. Based on classical simulation of quantum circuit realizations we find that this approach is suitable for implementation on existing quantum hardware and presents a prospective path to simulate complex quantum many-body dynamics that transcend the low depth limit of current digital quantum computers.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] (De)localization dynamics of molecular excitons: comparison of mixed quantum-classical and fully quantum treatments
    Titov, Evgenii
    Kopp, Tristan
    Hoche, Joscha
    Humeniuk, Alexander
    Mitric, Roland
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (20) : 12136 - 12148
  • [42] Classical to Path-Integral Adaptive Resolution in Molecular Simulation: Towards a Smooth Quantum-Classical Coupling
    Poma, A. B.
    Delle Site, L.
    PHYSICAL REVIEW LETTERS, 2010, 104 (25)
  • [43] Quantum-classical thermodynamic heterogenous surface catalysis model in dilute non-equilibrium hypersonic flows
    Jin, Hua
    Lin, Wencheng
    Hu, Feng
    Wu, Xiao
    Sui, Zhuochen
    You, Yancheng
    AEROSPACE SCIENCE AND TECHNOLOGY, 2025, 158
  • [44] Impact of quantum-classical correspondence on entanglement enhancement by single-mode squeezing
    Joseph, Sijo K.
    Chew, Lock Yue
    Sanjuan, Miguel A. F.
    PHYSICS LETTERS A, 2014, 378 (35) : 2603 - 2610
  • [45] Quantum-classical correspondence for a non-Hermitian Bose-Hubbard dimer
    Graefe, Eva-Maria
    Korsch, Hans Juergen
    Niederle, Astrid Elisa
    PHYSICAL REVIEW A, 2010, 82 (01)
  • [46] Considerations for evaluating thermodynamic properties with hybrid quantum-classical computing work flows
    Stober, Spencer T.
    Harwood, Stuart M.
    Trenev, Dimitar
    Barkoutsos, Panagiotis Kl
    Gujarati, Tanvi P.
    Mostame, Sarah
    PHYSICAL REVIEW A, 2022, 105 (01)
  • [47] Quantum-classical correspondence in spin-boson equilibrium states at arbitrary coupling
    Cerisola, F.
    Berritta, M.
    Scali, S.
    Horsley, S. A. R.
    Cresser, J. D.
    Anders, J.
    NEW JOURNAL OF PHYSICS, 2024, 26 (05):
  • [48] Conductivity of an electron coupled to anharmonic phonons: Quantum-classical simulations and comparison of approximations
    Fetherolf, Jonathan H.
    Shih, Petra
    Berkelbach, Timothy C.
    PHYSICAL REVIEW B, 2023, 107 (06)
  • [49] Discrete-time classical and quantum Markovian evolutions: Maximum entropy problems on path space
    Pavon, Michele
    Ticozzi, Francesco
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (04)
  • [50] A harmonic approximation of intramolecular vibrations in a mixed quantum-classical methodology: Linear absorbance of a dissolved Pheophorbid-a molecule as an example
    Megow, Joerg
    Kulesza, Alexander
    Qu, Zheng-wang
    Ronneberg, Thomas
    Bonacic-Koutecky, Vlasta
    May, Volkhard
    CHEMICAL PHYSICS, 2010, 377 (1-3) : 10 - 14