SC-SSL: Self-Correcting Collaborative and Contrastive Co-Training Model for Semi-Supervised Medical Image Segmentation

被引:7
作者
Miao, Juzheng [1 ,2 ]
Zhou, Si-Ping [1 ,2 ]
Zhou, Guang-Quan [1 ,2 ]
Wang, Kai-Ni [1 ,2 ]
Yang, Meng [3 ,4 ]
Zhou, Shoujun [5 ]
Chen, Yang [6 ,7 ]
机构
[1] Southeast Univ, Sch Biol Sci & Med Engn, Nanjing 211189, Peoples R China
[2] Southeast Univ, Jiangsu Key Lab Biomat & Devices, Nanjing 211189, Peoples R China
[3] Chinese Acad Med Sci & Peking Union Med Coll, Dept Ultrasound, State Key Lab Complex Severe & Rare Dis, Beijing 100006, Peoples R China
[4] Chinese Acad Med Sci & Peking Union Med Coll, Peking Union Med Coll Hosp, Beijing 100006, Peoples R China
[5] Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China
[6] Southeast Univ, Sch Comp Sci & Engn, Lab Image Sci & Technol, Jiangsu Prov Joint Int Res Lab Med Informat Proc,M, Nanjing 210096, Peoples R China
[7] Southeast Univ, Key Lab New Generat Artificial Intelligence Techno, Minist Educ, Nanjing 210096, Peoples R China
基金
中国国家自然科学基金;
关键词
Self-correcting; pixel-wise contrastive learning; semi-supervised learning; structure constraint; UNCERTAINTY; FEATURES;
D O I
10.1109/TMI.2023.3336534
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Image segmentation achieves significant improvements with deep neural networks at the premise of a large scale of labeled training data, which is laborious to assure in medical image tasks. Recently, semi-supervised learning (SSL) has shown great potential in medical image segmentation. However, the influence of the learning target quality for unlabeled data is usually neglected in these SSL methods. Therefore, this study proposes a novel self-correcting co-training scheme to learn a better target that is more similar to ground-truth labels from collaborative network outputs. Our work has three-fold highlights. First, we advance the learning target generation as a learning task, improving the learning confidence for unannotated data with a self-correcting module. Second, we impose a structure constraint to encourage the shape similarity further between the improved learning target and the collaborative network outputs. Finally, we propose an innovative pixel-wise contrastive learning loss to boost the representation capacity under the guidance of an improved learning target, thus exploring unlabeled data more efficiently with the awareness of semantic context. We have extensively evaluated our method with the state-of-the-art semi-supervised approaches on four public-available datasets, including the ACDC dataset, M&Ms dataset, Pancreas-CT dataset, and Task_07 CT dataset. The experimental results with different labeled-data ratios show our proposed method's superiority over other existing methods, demonstrating its effectiveness in semi-supervised medical image segmentation.
引用
收藏
页码:1347 / 1364
页数:18
相关论文
共 79 条
  • [1] [Anonymous], INT C MED IM COMP CO
  • [2] The Medical Segmentation Decathlon
    Antonelli, Michela
    Reinke, Annika
    Bakas, Spyridon
    Farahani, Keyvan
    Kopp-Schneider, Annette
    Landman, Bennett A.
    Litjens, Geert
    Menze, Bjoern
    Ronneberger, Olaf
    Summers, Ronald M.
    van Ginneken, Bram
    Bilello, Michel
    Bilic, Patrick
    Christ, Patrick F.
    Do, Richard K. G.
    Gollub, Marc J.
    Heckers, Stephan H.
    Huisman, Henkjan
    Jarnagin, William R.
    McHugo, Maureen K.
    Napel, Sandy
    Pernicka, Jennifer S. Golia
    Rhode, Kawal
    Tobon-Gomez, Catalina
    Vorontsov, Eugene
    Meakin, James A.
    Ourselin, Sebastien
    Wiesenfarth, Manuel
    Arbelaez, Pablo
    Bae, Byeonguk
    Chen, Sihong
    Daza, Laura
    Feng, Jianjiang
    He, Baochun
    Isensee, Fabian
    Ji, Yuanfeng
    Jia, Fucang
    Kim, Ildoo
    Maier-Hein, Klaus
    Merhof, Dorit
    Pai, Akshay
    Park, Beomhee
    Perslev, Mathias
    Rezaiifar, Ramin
    Rippel, Oliver
    Sarasua, Ignacio
    Shen, Wei
    Son, Jaemin
    Wachinger, Christian
    Wang, Liansheng
    [J]. NATURE COMMUNICATIONS, 2022, 13 (01)
  • [3] Bidirectional Copy-Paste for Semi-Supervised Medical Image Segmentation
    Bai, Yunhao
    Chen, Duowen
    Li, Qingli
    Shen, Wei
    Wang, Yan
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 11514 - 11524
  • [4] An Exploration of 2D and 3D Deep Learning Techniques for Cardiac MR Image Segmentation
    Baumgartner, Christian F.
    Koch, Lisa M.
    Pollefeys, Marc
    Konukoglu, Ender
    [J]. STATISTICAL ATLASES AND COMPUTATIONAL MODELS OF THE HEART: ACDC AND MMWHS CHALLENGES, 2018, 10663 : 111 - 119
  • [5] Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved?
    Bernard, Olivier
    Lalande, Alain
    Zotti, Clement
    Cervenansky, Frederick
    Yang, Xin
    Heng, Pheng-Ann
    Cetin, Irem
    Lekadir, Karim
    Camara, Oscar
    Gonzalez Ballester, Miguel Angel
    Sanroma, Gerard
    Napel, Sandy
    Petersen, Steffen
    Tziritas, Georgios
    Grinias, Elias
    Khened, Mahendra
    Kollerathu, Varghese Alex
    Krishnamurthi, Ganapathy
    Rohe, Marc-Michel
    Pennec, Xavier
    Sermesant, Maxime
    Isensee, Fabian
    Jaeger, Paul
    Maier-Hein, Klaus H.
    Full, Peter M.
    Wolf, Ivo
    Engelhardt, Sandy
    Baumgartner, Christian F.
    Koch, Lisa M.
    Wolterink, Jelmer M.
    Isgum, Ivana
    Jang, Yeonggul
    Hong, Yoonmi
    Patravali, Jay
    Jain, Shubham
    Humbert, Olivier
    Jodoin, Pierre-Marc
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (11) : 2514 - 2525
  • [6] Multi-Centre, Multi-Vendor and Multi-Disease Cardiac Segmentation: The M&Ms Challenge
    Campello, Victor M.
    Gkontra, Polyxeni
    Izquierdo, Cristian
    Martin-Isla, Carlos
    Sojoudi, Alireza
    Full, Peter M.
    Maier-Hein, Klaus
    Zhang, Yao
    He, Zhiqiang
    Ma, Jun
    Parreno, Mario
    Albiol, Alberto
    Kong, Fanwei
    Shadden, Shawn C.
    Acero, Jorge Corral
    Sundaresan, Vaanathi
    Saber, Mina
    Elattar, Mustafa
    Li, Hongwei
    Menze, Bjoern
    Khader, Firas
    Haarburger, Christoph
    Scannell, Cian M.
    Veta, Mitko
    Carscadden, Adam
    Punithakumar, Kumaradevan
    Liu, Xiao
    Tsaftaris, Sotirios A.
    Huang, Xiaoqiong
    Yang, Xin
    Li, Lei
    Zhuang, Xiahai
    Vilades, David
    Descalzo, Martin L.
    Guala, Andrea
    La Mura, Lucia
    Friedrich, Matthias G.
    Garg, Ria
    Lebel, Julie
    Henriques, Filipe
    Karakas, Mahir
    Cavus, Ersin
    Petersen, Steffen E.
    Escalera, Sergio
    Segui, Santi
    Rodriguez-Palomares, Jose F.
    Lekadir, Karim
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2021, 40 (12) : 3543 - 3554
  • [7] Emerging Properties in Self-Supervised Vision Transformers
    Caron, Mathilde
    Touvron, Hugo
    Misra, Ishan
    Jegou, Herve
    Mairal, Julien
    Bojanowski, Piotr
    Joulin, Armand
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 9630 - 9640
  • [8] Carscadden Adam, 2021, Statistical Atlases and Computational Models of the Heart. M&Ms and EMIDEC Challenges 11th International Workshop (STACOM 2020). Held in Conjunction with MICCAI 2020. Revised Selected Papers. Lecture Notes in Computer Science (LNCS 12592), P250, DOI 10.1007/978-3-030-68107-4_25
  • [9] Chaitanya K., 2021, arXiv
  • [10] Chaitanya K, 2020, Adv. Neural Inf. Process. Syst., V33, P12546