Human-like Evaluation of Visual Perception System for Autonomous Vehicles based on Human Visual Attention

被引:0
|
作者
Li, Chenhao [1 ]
Wang, Yijin [1 ]
Li, Kuang [1 ]
Fan, Qianhui [1 ]
Shen, Yu [1 ]
Ji, Yuxiong [1 ]
机构
[1] Tongji Univ, Key Lab Rd & Traff Engn, Minist Educ, Shanghai 201804, Peoples R China
来源
2023 IEEE 26TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS, ITSC | 2023年
关键词
MODEL;
D O I
10.1109/ITSC57777.2023.10422311
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The evaluation of visual perception systems for autonomous vehicles (AVs) is challenging for developing AV technologies. Enlightened by current studies on human-like AV control, assessing the similarity of visual attention between AVs and human drivers becomes one of the potential means for the evaluation of AV technologies. This work proposes a human-like evaluation framework for the visual perception system of AVs, based on human visual attention benchmarks derived from expert human drivers' eye gaze data. We first create a perceptual benchmark by standardizing the gaze data from different expert human drivers. Then, we extract the features from the hidden layers of different AV perception algorithms. Finally, a human-like evaluation index is proposed to quantify the differences between chauffeured vehicles and AVs. The proposed human-like evaluation framework is of help for the development of AV system testing and evaluation by assessing the visual perception of AVs under various driving scenarios.
引用
收藏
页码:5555 / 5560
页数:6
相关论文
共 50 条
  • [31] Human-Centered Solutions Based on Automated Visual Inspection System
    Lario, Joan
    Garcia-de-la-Puente, N. P.
    Lopez, Eric
    Olbrich, Manuel
    Naranjo, Valery
    NAVIGATING UNPREDICTABILITY: COLLABORATIVE NETWORKS IN NON-LINEAR WORLDS, PRO-VE 2024, PT II, 2024, 727 : 197 - 211
  • [32] Representation spaces in a visual-based human action recognition system
    Pantrigo, J. J.
    Sanchez, A.
    Mira, J.
    NEUROCOMPUTING, 2009, 72 (4-6) : 901 - 915
  • [33] 2D histogram equalisation based on the human visual system
    Kim, S. -W.
    Choi, B. -D.
    Park, W. -J.
    Ko, S. -J.
    ELECTRONICS LETTERS, 2016, 52 (06) : 443 - 444
  • [34] In-silico Investigation of Human Visual System
    Koprinkova-Hristova, Petia
    Nedelcheva, Simona
    Bocheva, Nadejda
    CONTEMPORARY METHODS IN BIOINFORMATICS AND BIOMEDICINE AND THEIR APPLICATIONS, 2022, 374 : 224 - 235
  • [35] Image Quality Assessment and Human Visual System
    Gao, Xinbo
    Lu, Wen
    Tao, Dacheng
    Li, Xuelong
    VISUAL COMMUNICATIONS AND IMAGE PROCESSING 2010, 2010, 7744
  • [36] Robust Object Categorization and Segmentation Motivated by Visual Contexts in the Human Visual System
    Kim, Sungho
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2011,
  • [37] A Novel Robotic Visual Perception Method Using Object-based Attention
    Yu, Yuanlong
    Mann, George K. I.
    Gosine, Raymond G.
    2009 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO 2009), VOLS 1-4, 2009, : 1467 - 1473
  • [38] No-Reference Stereoscopic Image Quality Assessment Based on Visual Attention and Perception
    Li, Yafei
    Yang, Feng
    Wan, Wenbo
    Wang, Jun
    Gao, Min
    Zhang, Jia
    Sun, Jiande
    IEEE ACCESS, 2019, 7 : 46706 - 46716
  • [39] A Goal-Directed Visual Perception System Using Object-Based Top-Down Attention
    Yu, Yuanlong
    Mann, George K. I.
    Gosine, Raymond G.
    IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT, 2012, 4 (01) : 87 - 103
  • [40] Human and machine: Evaluating whether action automation influences visual perception
    Tenhundfeld, Nathan L.
    Witt, Jessica K.
    ATTENTION PERCEPTION & PSYCHOPHYSICS, 2020, 82 (06) : 3234 - 3249