A Study of Flame Dynamics and Structure in Premixed Turbulent Planar NH3/H2/Air Flames

被引:0
|
作者
Tamadonfar, P. [1 ]
Karimkashi, S. [1 ]
Kaario, O. [1 ]
Vuorinen, V. [1 ]
机构
[1] Aalto Univ, Sch Engn, Dept Mech Engn, Otakaari 4, Espoo 02150, Finland
基金
芬兰科学院;
关键词
LEWIS NUMBER; NUMERICAL-SIMULATION; BURNING VELOCITY; COMBUSTION; CURVATURE; SPEED; PRESSURE; AMMONIA; SCALE;
D O I
暂无
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Ammonia NH3 has received considerable attention as a near future carbon-free synthetic fuel due to its economic storage/transportation/distribution, and its potential to be thermally decomposed to hydrogen H-2. Since the boiling temperature and condensation pressure of NH3 is comparable to propane C3H8, it could be employed in marine engines running on C3H8 making the combustion processes carbon neutral. To promote the low burning velocity and heat of combustion of ammonia, it is required to enrich the pure ammonia with hydrogen. In this study, two quasi direct numerical simulation (quasi-DNS) cases with detailed chemistry (31 species and 203 reactions) and the mixture-averaged transport model are examined to study the planar ammonia/hydrogen/air flames under decaying turbulence. The reactants temperature and pressure are set to 298 K and 1 atm, respectively. The initial turbulent Karlovitz number is changed from 4.3 to 16.9 implying that all the test conditions are within the thin reaction zones combustion regime. Results indicate that the density-weighted flame displacement speed S-d*, on average, is higher than the unstrained premixed laminar burning velocity S-L(0) value for both test cases. This suggests that the flame elements propagate faster than its laminar flame counterpart. Furthermore, the flame stretch factor defined as the ratio of the turbulent to the laminar burning velocity divided by the ratio of the wrinkled to the unwrinkled flame surface area is higher than unity, i.e., the Damkohler's first hypothesis is not valid for these flame conditions. This indicates that the local flamelet velocity value, on average, is higher than the unstrained premixed laminar burning velocity. In addition, results show that the mean value of the local equivalence ratio for the turbulent conditions is higher than its laminar counterpart due to the preferential diffusion of hydrogen and the turbulent mixing. Furthermore, the net production rate of hydrogen is negatively correlated with the flame front curvature suggesting that the local burning rate is intensified under positively curved regions.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] A study of flame dynamics and structure in premixed turbulent planar NH3/H2/air flames
    Tamadonfar, Parsa
    Karimkashi, Shervin
    Kaario, Ossi
    Vuorinen, Ville
    INTERNATIONAL JOURNAL OF ENGINE RESEARCH, 2024, 25 (02) : 262 - 275
  • [2] The mechanism of propagation of NH3/air and NH3/H2/air laminar premixed flame fronts
    Tingas, Efstathios-Al.
    Gkantonas, Savvas
    Mastorakos, Epaminondas
    Goussis, Dimitris
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 78 : 1004 - 1015
  • [3] NH2* Chemiluminescence in Premixed NH3/H2/N2-Air Flames
    Suarez, Manuel A.
    Hay, Matthey K.
    Naude, Kristi
    Kulatilaka, Waruna D.
    AIAA SCITECH 2024 FORUM, 2024,
  • [4] Effects of molecular diffusion modeling on turbulent premixed NH3 /H 2 /air flames
    Chi, Cheng
    Han, Wang
    Thevenin, Dominique
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2023, 39 (02) : 2259 - 2268
  • [5] Ammonia as a fuel: Optical investigation of turbulent flame propagation of NH3/Air and NH3/H2/N2/Air flames at engine conditions
    Klawitter, Marc
    Wuthrich, Silas
    Cartier, Patrick
    Albrecht, Patrick
    Herrmann, Kai
    Goessnitzer, Clemens
    Pirker, Gerhard
    Wimmer, Andreas
    FUEL, 2024, 375
  • [6] Experimental and numerical study on laminar premixed NH3/H2/O2/air flames
    Wang, Zhe
    Ji, Changwei
    Zhang, Tianyue
    Wang, Du
    Zhai, Yifan
    Wang, Shuofeng
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (39) : 14885 - 14895
  • [7] Experimental and kinetic modeling study of laminar burning velocities of NH3/air, NH3/H2/air, NH3/CO/air and NH3/CH4/air premixed flames
    Han, Xinlu
    Wang, Zhihua
    Costa, Mario
    Sun, Zhiwei
    He, Yong
    Cen, Kefa
    COMBUSTION AND FLAME, 2019, 206 : 214 - 226
  • [8] An experimental and kinetic modeling study on NH3/air, NH3/H2/air, NH3/CO/air, and NH3/CH4/air premixed laminar flames at elevated temperature
    Zhou, Shangkun
    Cui, Baochong
    Yang, Wenjun
    Tan, Houzhang
    Wang, Jinhua
    Dai, Hongchao
    Li, Liangyu
    Rahman, Zia Ur
    Wang, Xiaoxiao
    Deng, Shuanghui
    Wang, Xuebin
    COMBUSTION AND FLAME, 2023, 248
  • [9] Statistics of local and global flame speed and structure for highly turbulent H2/air premixed flames
    Song, Wonsik
    Perez, Francisco E. Hernandez
    Tingas, Efstathios-Al.
    Im, Hong G.
    COMBUSTION AND FLAME, 2021, 232
  • [10] Experimental study and kinetic analysis of the laminar burning velocity of NH3/syngas/air, NH3/CO/air and NH3/H2/air premixed flames at elevated pressures
    Wang, Shixing
    Wang, Zhihua
    Elbaz, Ayman M.
    Han, Xinlu
    He, Yong
    Costa, Mario
    Konnov, Alexander A.
    Roberts, William L.
    COMBUSTION AND FLAME, 2020, 221 : 270 - 287