Exploring the Adaptability of Exotic Safflower (Carthamus tinctorius L.) as a Viable Oilseed for Oil Scarcity

被引:0
|
作者
Sajid, Muhammad [1 ]
Munir, Hassan [1 ]
Rauf, Saeed [3 ]
Rasul, Fahd [1 ]
Ibtahaj, Iqra [2 ]
Ditta, Allah [4 ,5 ]
Al-Ashkar, Ibrahim [6 ]
Rajendran, Karthika [7 ]
Ratnasekera, Disna [8 ]
El Sabagh, Ayman [9 ]
机构
[1] Univ Agr Faisalabad, Dept Agron, Faisalabad 38000, Pakistan
[2] Univ Agr Faisalabad, Dept Bot, Faisalabad 38000, Pakistan
[3] Univ Sargodha, Univ Coll Agr, Dept Plant Breeding & Genet, Sargodha, Pakistan
[4] Shaheed Benazir Bhutto Univ Sheringal, Dept Environm Sci, Khyber Pakhtunkhwa 18000, Pakistan
[5] Univ Western Australia, Sch Biol Sci, 35 Stirling Highway, Perth, WA 6009, Australia
[6] King Saud Univ, Coll Food & Agr Sci, Plant Prod Dept, Riyadh, Saudi Arabia
[7] Vellore Inst Technol VIT, VIT Sch Agr Innovat & Adv Learning VAIAL, Vellore 632014, Tamil Nadu, India
[8] Univ Ruhuna, Fac Agr, Dept Agr Biol, Kamburupitiya 81000, Sri Lanka
[9] Univ Kafrelsheikh, Fac Agr, Dept Agron, Kafr Al Sheikh, Egypt
来源
POLISH JOURNAL OF ENVIRONMENTAL STUDIES | 2024年 / 33卷 / 05期
关键词
safflower; germplasm; adaptability; yield; oil; fatty acid; SPRING SAFFLOWER; YIELD; SEED; TRAITS;
D O I
10.15244/pjoes/183566
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Safflower is a climate-resilient, quality oilseed with high resistance to water scarcity, soil salinity, and frost-prone areas, and it has a wide range of applications in daily life, ranging from food to pharmaceutical to industrial. Adapting high-quality oil-content-producing safflower cultivars can help reduce costs and reduce precious foreign exchange in countries like Pakistan. Exotic germplasm imported from the United States Department of Agriculture-Agricultural Research Service (USDA-ARS), consisting of 145 exotic safflower accessions and four local control cultivars were planted under semi-arid conditions in Faisalabad, Pakistan, during winter 2018-19 and 2019-20 season using an augmented design with unreplicated entries and replicated checks. Genotypic coefficient of variability (GCV) analysis revealed significant variation among the accessions of safflower for achene yield plant-1, heads plant-1, and branches plant-1. The Pearson correlation analysis revealed a significant but negative correlation between days to maturity and days to 50% flowering. The results revealed larger achene yields and earlier maturity in safflower planted in early winter. Biplot analysis found that five of the tested accessions had higher achene yield plant-1, while four of the other accessions had a higher percentage of oil than the control, which was the local safflower check-31, which had the highest oil content and best quality traits. Furthermore, the dendrogram revealed that four safflower accessions exhibited higher morphological uniqueness across the investigated traits during both years of study, which can be employed for future varietal development.
引用
收藏
页码:5843 / 5856
页数:14
相关论文
共 50 条
  • [21] Crop water stress index assessment of safflower (Carthamus tinctorius L.)
    Gultas, Hueseyin Tevfik
    SCIENTIA AGRICOLA, 2025, 82
  • [22] Effect of Fungicide Seed Treatment on Safflower (Carthamus tinctorius L.) Germination
    Vejrazka, Karel
    Hofbauer, Jan
    Hrudova, Eva
    Sindelkova, Ivana
    SEED AND SEEDLINGS X: SCIENTIFIC AND TECHNICAL SEMINAR, 2011, : 82 - 87
  • [23] Safflower (Carthamus tinctorius L.): An underutilized crop with potential medicinal values
    Gomashe, Sunil S.
    Ingle, Krishnananda P.
    Sarap, Yukta A.
    Chand, Dinesh
    Rajkumar, S.
    ANNALS OF PHYTOMEDICINE-AN INTERNATIONAL JOURNAL, 2021, 10 (01): : 242 - 248
  • [24] Fatty acid composition and tocopherol profiles of safflower (Carthamus tinctorius L.) seed oils
    Matthaus, B.
    Ozcan, M. M.
    Al Juhaimi, F. Y.
    NATURAL PRODUCT RESEARCH, 2015, 29 (02) : 193 - 196
  • [25] Development and characterization of genomic microsatellite markers in safflower (Carthamus tinctorius L.)
    Hamdan, Y. A. S.
    Garcia-Moreno, M. J.
    Redondo-Nevado, J.
    Velasco, L.
    Perez-Vich, B.
    PLANT BREEDING, 2011, 130 (02) : 237 - 241
  • [26] GENOTYPE REACTION AND EFFECT OF THE SOWING TIME UNDER ARID ECOLOGICAL CONDITIONS IN SAFFLOWER (CARTHAMUS TINCTORIUS L.)
    Kose, Arzu
    Hatipoglu, Halil
    Arslan, Huseyin
    FRESENIUS ENVIRONMENTAL BULLETIN, 2018, 27 (5A): : 3577 - 3586
  • [27] Effect of Irrigation Regimes on Oil Content and Composition of Safflower (Carthamus tinctorius L.) Cultivars
    Ashrafi, Ensiye
    Razmjoo, Khorshid
    JOURNAL OF THE AMERICAN OIL CHEMISTS SOCIETY, 2010, 87 (05) : 499 - 506
  • [28] THE EFFECT OF DIFFERENT ENVIRONMENTAL CONDITIONS ON YIELD AND OIL RATES OF SAFFLOWER (CARTHAMUS TINCTORIUS L.)
    Demir, Ismail
    Kara, Kamil
    FRESENIUS ENVIRONMENTAL BULLETIN, 2018, 27 (02): : 989 - 995
  • [29] Variations in seed oil and chemical composition among the safflower genotypes (Carthamus tinctorius L.)
    Tonguc, Muhammet
    Onder, Sercan
    Erbas, Sabri
    NOTULAE BOTANICAE HORTI AGROBOTANICI CLUJ-NAPOCA, 2023, 51 (01)
  • [30] Physiological and biochemical response of safflower (Carthamus tinctorius L.) cultivars to zinc application under drought stress
    Manvelian, Jivani
    Weisany, Weria
    Tahir, Nawroz Abdul-razzak
    Jabbari, Hamid
    Diyanat, Marjan
    INDUSTRIAL CROPS AND PRODUCTS, 2021, 172