PyLandslide: A Python']Python tool for landslide susceptibility mapping and uncertainty analysis

被引:2
|
作者
Basheer, Mohammed [1 ,2 ]
Oommen, Thomas [3 ]
机构
[1] Univ Toronto, Dept Civil & Mineral Engn, Toronto, ON, Canada
[2] Humboldt Univ, Albrecht Daniel Thaer Inst, Berlin, Germany
[3] Univ Mississippi, Dept Geol & Geol Engn, Oxford, MS 38677 USA
关键词
Landslides; Disaster risk Management; Investment Planning; Geographic Information Systems; Heavy Precipitation; Italy; LAND-USE; GIS; REGRESSION; MOUNTAINS; HAZARD;
D O I
10.1016/j.envsoft.2024.106055
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Mitigating the impacts of landslides and planning resilient infrastructure necessitates assessing the exposure to this hazard through, for example, susceptibility mapping involving the spatial integration of various contributing factors. Here, we introduce PyLandslide, an open-source Python tool that leverages machine learning and sensitivity analysis to quantify the weights of various contributing factors, estimate the associated uncertainties, and generate susceptibility maps. We apply PyLandslide to the case of rainfall-triggered landslides in Italy driven by historical precipitation data (1981-2023) and nine climate projections for the mid-century (2041-2050). Results highlight distance to roads as the most influential factor in determining landslide susceptibility in Italy, followed by slope. Our findings reveal an overall reduction in susceptibility in the mid-century compared to the historical period; however, the directional changes vary spatially. Uncertainty analysis should play a central role in decision-making on landslides, where weights are intricately linked to investments.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] PySAP: Python']Python Sparse Data Analysis Package for multidisciplinary image processing
    Farrens, S.
    Grigis, A.
    El Gueddari, L.
    Ramzi, Z.
    Chaithya, G. R.
    Starck, S.
    Sarthou, B.
    Cherkaoui, H.
    Ciuciu, P.
    Starck, J-L
    ASTRONOMY AND COMPUTING, 2020, 32
  • [22] Research on Uncertainty of Landslide Susceptibility Prediction-Bibliometrics and Knowledge Graph Analysis
    Yang, Zhengli
    Liu, Chao
    Nie, Ruihua
    Zhang, Wanchang
    Zhang, Leili
    Zhang, Zhijie
    Li, Weile
    Liu, Gang
    Dai, Xiaoai
    Zhang, Donghui
    Zhang, Min
    Miao, Shuangxi
    Fu, Xiao
    Ren, Zhiming
    Lu, Heng
    REMOTE SENSING, 2022, 14 (16)
  • [23] Machine-learning based landslide susceptibility modelling with emphasis on uncertainty analysis
    Achu, A. L.
    Aju, C. D.
    Di Napoli, Mariano
    Prakash, Pranav
    Gopinath, Girish
    Shaji, E.
    Chandra, Vinod
    GEOSCIENCE FRONTIERS, 2023, 14 (06)
  • [24] Human Impact Index in Landslide Susceptibility Mapping
    Zhao, Wenyi
    Tian, Yuan
    Wu, Lun
    Liu, Yu
    2010 18TH INTERNATIONAL CONFERENCE ON GEOINFORMATICS, 2010,
  • [25] A heuristic approach to global landslide susceptibility mapping
    Stanley, Thomas
    Kirschbaum, Dalia B.
    NATURAL HAZARDS, 2017, 87 (01) : 145 - 164
  • [26] Landslide susceptibility mapping: a practitioner's view
    Hearn, G. J.
    Hart, A. B.
    BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT, 2019, 78 (08) : 5811 - 5826
  • [27] Landslide Susceptibility Mapping Using Weighted Linear Combination: A Case of Gucheng Town in Ningxia, China
    Li, Huan
    Mao, Zhengjun
    Sun, Jiewen
    Zhong, Jiaxin
    Shi, Shuojie
    GEOTECHNICAL AND GEOLOGICAL ENGINEERING, 2023, 41 (02) : 1247 - 1273
  • [28] Verification of landslide susceptibility mapping:: A case study
    Fernández, CI
    Del Castillo, TF
    El Hamdouni, R
    Montero, JC
    EARTH SURFACE PROCESSES AND LANDFORMS, 1999, 24 (06) : 537 - 544
  • [29] The importance of input data on landslide susceptibility mapping
    Gaidzik, Krzysztof
    Teresa Ramirez-Herrera, Maria
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [30] Landslide Susceptibility Mapping in a Mountainous Area Using Machine Learning Algorithms
    Shahabi, Himan
    Ahmadi, Reza
    Alizadeh, Mohsen
    Hashim, Mazlan
    Al-Ansari, Nadhir
    Shirzadi, Ataollah
    Wolf, Isabelle D.
    Ariffin, Effi Helmy
    REMOTE SENSING, 2023, 15 (12)