PyLandslide: A Python']Python tool for landslide susceptibility mapping and uncertainty analysis

被引:2
|
作者
Basheer, Mohammed [1 ,2 ]
Oommen, Thomas [3 ]
机构
[1] Univ Toronto, Dept Civil & Mineral Engn, Toronto, ON, Canada
[2] Humboldt Univ, Albrecht Daniel Thaer Inst, Berlin, Germany
[3] Univ Mississippi, Dept Geol & Geol Engn, Oxford, MS 38677 USA
关键词
Landslides; Disaster risk Management; Investment Planning; Geographic Information Systems; Heavy Precipitation; Italy; LAND-USE; GIS; REGRESSION; MOUNTAINS; HAZARD;
D O I
10.1016/j.envsoft.2024.106055
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Mitigating the impacts of landslides and planning resilient infrastructure necessitates assessing the exposure to this hazard through, for example, susceptibility mapping involving the spatial integration of various contributing factors. Here, we introduce PyLandslide, an open-source Python tool that leverages machine learning and sensitivity analysis to quantify the weights of various contributing factors, estimate the associated uncertainties, and generate susceptibility maps. We apply PyLandslide to the case of rainfall-triggered landslides in Italy driven by historical precipitation data (1981-2023) and nine climate projections for the mid-century (2041-2050). Results highlight distance to roads as the most influential factor in determining landslide susceptibility in Italy, followed by slope. Our findings reveal an overall reduction in susceptibility in the mid-century compared to the historical period; however, the directional changes vary spatially. Uncertainty analysis should play a central role in decision-making on landslides, where weights are intricately linked to investments.
引用
收藏
页数:12
相关论文
共 50 条
  • [11] Machine learning ensemble modelling as a tool to improve landslide susceptibility mapping reliability
    Di Napoli, Mariano
    Carotenuto, Francesco
    Cevasco, Andrea
    Confuorto, Pierluigi
    Di Martire, Diego
    Firpo, Marco
    Pepe, Giacomo
    Raso, Emanuele
    Calcaterra, Domenico
    LANDSLIDES, 2020, 17 (08) : 1897 - 1914
  • [12] LecoS - A python']python plugin for automated landscape ecology analysis
    Jung, Martin
    ECOLOGICAL INFORMATICS, 2016, 31 : 18 - 21
  • [13] Analysis of the change in bugginess and adaptiveness of python']python software systems
    Yousuf, Mir Mohammad
    Rashid, Mamoon
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (30) : 43107 - 43123
  • [14] Geospatial Analysis and Mapping of Regional Landslide Susceptibility: A Case Study of Eastern Tennessee, USA
    Meng, Qingmin
    Smith, Sara A.
    Rodgers, John
    GEOHAZARDS, 2024, 5 (02): : 364 - 373
  • [15] ProbShakemap: A Python']Python toolbox propagating source uncertainty to ground motion prediction for urgent computing applications
    Stallone, Angela
    Selva, Jacopo
    Cordrie, Louise
    Faenza, Licia
    Michelini, Alberto
    Lauciani, Valentino
    COMPUTERS & GEOSCIENCES, 2025, 195
  • [16] scikit-fda: A Python']Python Package for Functional Data Analysis
    Ramos-Carreno, Carlos
    Carbajo-Berrocal, Miguel
    Torrecilla, Jose Luis
    Marcos, Pablo
    Suarez, Alberto
    JOURNAL OF STATISTICAL SOFTWARE, 2024, 109 (02): : 1 - 37
  • [17] FaultQuake: An open-source Python']Python tool for estimating Seismic Activity Rates in faults
    Tavakolizadeh, Nasrin
    Mohammadigheymasi, Hamzeh
    Visini, Francesco
    Pombo, Nuno
    COMPUTERS & GEOSCIENCES, 2024, 191
  • [18] Landslide Susceptibility Mapping in Yalova, Turkey, by Remote Sensing and GIS
    Alparslan, Erhan
    ENVIRONMENTAL & ENGINEERING GEOSCIENCE, 2011, 17 (03) : 255 - 265
  • [19] Methodology for Landslide Susceptibility and Hazard Mapping Using GIS and SDI
    Fernandez, Tomas
    Jimenez, Jorge
    Delgado, Jorge
    Cardenal, Javier
    Luis Perez, Jose
    El Hamdouni, Rachid
    Irigaray, Clemente
    Chacon, Jose
    INTELLIGENT SYSTEMS FOR CRISIS MANAGEMENT: GEO-INFORMATION FOR DISASTER MANAGEMENT (GI4DM) 2012, 2013, : 185 - 198
  • [20] Artificial neural network ensembles applied to the mapping of landslide susceptibility
    Bragagnolo, L.
    da Silva, R., V
    Grzybowski, J. M., V
    CATENA, 2020, 184