An end-to-end gait recognition system for covariate conditions using custom kernel CNN

被引:1
|
作者
Ali, Babar [1 ]
Bukhari, Maryam [1 ]
Maqsood, Muazzam [1 ]
Moon, Jihoon [2 ]
Hwang, Eenjun [3 ]
Rho, Seungmin [4 ]
机构
[1] COMSATS Univ Islamabad, Dept Comp Sci, Attock Campus, Islamabad, Pakistan
[2] Soonchunhyang Univ, Dept AI & Big Data, Asan 31538, South Korea
[3] Korea Univ, Sch Elect Engn, Seoul 02841, South Korea
[4] Chung Ang Univ, Dept Ind Secur, Seoul 06974, South Korea
关键词
Gait recognition; Covariate factors; Deep learning; Convolutional neural networks; Custom kernel CNN; NEURAL-NETWORKS; IDENTIFICATION;
D O I
10.1016/j.heliyon.2024.e32934
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Gait recognition is the identification of individuals based on how they walk. It can identify an individual of interest without their intervention, making it better suited for surveillance from afar. Computer-aided silhouette-based gait analysis is frequently employed due to its efficiency and effectiveness. However, covariate conditions have a significant influence on individual recognition because they conceal essential features that are helpful in recognizing individuals from their walking style. To address such issues, we proposed a novel deep-learning framework to tackle covariate conditions in gait by proposing regions subject to covariate conditions. The features extracted from those regions will be neglected to keep the model's performance effective with custom kernels. The proposed technique sets aside static and dynamic areas of interest, where static areas contain covariates, and then features are learnt from the dynamic regions unaffected by covariates to effectively recognize individuals. The features were extracted using three customized kernels, and the results were concatenated to produce a fused feature map. Afterward, CNN learns and extracts the features from the proposed regions to recognize an individual. The suggested approach is an end-to-end system that eliminates the requirement for manual region proposal and feature extraction, which would improve gait-based identification of individuals in real-world scenarios. The experimentation is performed on publicly available dataset i.e. CASIA A, and CASIA C. The findings indicate that subjects wearing bags produced 90 % accuracy, and subjects wearing coats produced 58 % accuracy. Likewise, recognizing individuals with different walking speeds also exhibited excellent results, with an accuracy of 94 % for fast and 96 % for slow-paced walk patterns, which shows improvement compared to previous deep learning methods.(c) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] CNN-based End-to-End Learning for Lane Centering
    Ebu, Iffat Ara
    Islam, Fahmida
    Ball, John E.
    Goodin, Christopher T.
    AUTONOMOUS SYSTEMS:SENSORS, PROCESSING, AND SECURITY FOR GROUND, AIR, SEA, AND SPACE VEHICLES AND INFRASTRUCTURE 2024, 2024, 13052
  • [32] An Efficient Gait Recognition Method for Known and Unknown Covariate Conditions
    Bukhari, Maryam
    Bajwa, Khalid Bashir
    Gillani, Saira
    Maqsood, Muazzam
    Durrani, Mehr Yahya
    Mehmood, Irfan
    Ugail, Hassan
    Rho, Seungmin
    IEEE ACCESS, 2021, 9 : 6465 - 6477
  • [33] RMFPN: End-to-End Scene Text Recognition Using Multi-Feature Pyramid Network
    Mahadshetti, Ruturaj
    Lee, Guee-Sang
    Choi, Deok-Jai
    IEEE ACCESS, 2023, 11 : 61892 - 61900
  • [34] ADIEU FEATURES? END-TO-END SPEECH EMOTION RECOGNITION USING A DEEP CONVOLUTIONAL RECURRENT NETWORK
    Trigeorgis, George
    Ringeval, Fabien
    Brueckner, Raymond
    Marchi, Erik
    Nicolaou, Mihalis A.
    Shuller, Bjoern
    Zafeiriou, Stefanos
    2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 5200 - 5204
  • [35] Development of CRF and CTC Based End-To-End Kazakh Speech Recognition System
    Oralbekova, Dina
    Mamyrbayev, Orken
    Othman, Mohamed
    Alimhan, Keylan
    Zhumazhanov, Bagashar
    Nuranbayeva, Bulbul
    INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2022, PT I, 2022, 13757 : 519 - 531
  • [36] End-to-end neural automatic speech recognition system for low resource languages
    Dhahbi, Sami
    Saleem, Nasir
    Bourouis, Sami
    Berrima, Mouhebeddine
    Verdu, Elena
    EGYPTIAN INFORMATICS JOURNAL, 2025, 29
  • [37] GaitNet: An end-to-end network for gait based human identification
    Song, Chunfeng
    Huang, Yongzhen
    Huang, Yan
    Jia, Ning
    Wang, Liang
    PATTERN RECOGNITION, 2019, 96
  • [38] An End-to-End Deep Learning System for Hop Classification
    Castro, Pedro
    Moreira, Gladston
    Luz, Eduardo
    IEEE LATIN AMERICA TRANSACTIONS, 2022, 20 (03) : 430 - 442
  • [39] End-to-End View-Aware Vehicle Classification via Progressive CNN Learning
    Cao, Jiawei
    Wang, Wenzhong
    Wang, Xiao
    Li, Chenglong
    Tang, Jin
    COMPUTER VISION, PT I, 2017, 771 : 729 - 737
  • [40] A comprehensive comparison of end-to-end approaches for handwritten digit string recognition
    Hochuli, Andre G.
    Britto Jr, Alceu S.
    Saji, David A.
    Saavedra, Jose M.
    Sabourin, Robert
    Oliveira, Luiz S.
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 165 (165)