Skeleton-guided 3D convolutional neural network for tubular structure segmentation

被引:0
作者
Zhu, Ruiyun [1 ]
Oda, Masahiro [1 ,3 ]
Hayashi, Yuichiro [1 ]
Kitasaka, Takayuki [4 ]
Misawa, Kazunari [5 ]
Fujiwara, Michitaka [6 ]
Mori, Kensaku [1 ,2 ,3 ]
机构
[1] Nagoya Univ, Grad Sch Informat, Furo Cho,Chikusa Ku, Nagoya, Aichi, Japan
[2] Nagoya Univ, Informat Strategy Off, Informat & Commun, Furo Cho,Chikusa Ku, Nagoya, Aichi, Japan
[3] Nagoya Univ, Informat Technol Ctr, Furo Cho,Chikusa Ku, Nagoya, Aichi, Japan
[4] Aichi Inst Technol, Sch Informat Sci, 1247 Yachigusa,Yakusa Cho, Toyota, Aichi, Japan
[5] Aichi Canc Ctr Hosp, 1-1 Kanokoden,Chikusa Ku, Nagoya, Aichi, Japan
[6] Nagoya Univ, Grad Sch Med, 65 Tsurumai Cho,Showa Ku, Nagoya, Aichi, Japan
关键词
3D convolutional network; Tubular structure segmentation; CT image;
D O I
10.1007/s11548-024-03215-x
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
PurposeAccurate segmentation of tubular structures is crucial for clinical diagnosis and treatment but is challenging due to their complex branching structures and volume imbalance. The purpose of this study is to propose a 3D deep learning network that incorporates skeleton information to enhance segmentation accuracy in these tubular structures.MethodsOur approach employs a 3D convolutional network to extract 3D tubular structures from medical images such as CT volumetric images. We introduce a skeleton-guided module that operates on extracted features to capture and preserve the skeleton information in the segmentation results. Additionally, to effectively train our deep model in leveraging skeleton information, we propose a sigmoid-adaptive Tversky loss function which is specifically designed for skeleton segmentation.ResultsWe conducted experiments on two distinct 3D medical image datasets. The first dataset consisted of 90 cases of chest CT volumetric images, while the second dataset comprised 35 cases of abdominal CT volumetric images. Comparative analysis with previous segmentation approaches demonstrated the superior performance of our method. For the airway segmentation task, our method achieved an average tree length rate of 93.0%, a branch detection rate of 91.5%, and a precision rate of 90.0%. In the case of abdominal artery segmentation, our method attained an average precision rate of 97.7%, a recall rate of 91.7%, and an F-measure of 94.6%.ConclusionWe present a skeleton-guided 3D convolutional network to segment tubular structures from 3D medical images. Our skeleton-guided 3D convolutional network could effectively segment small tubular structures, outperforming previous methods.
引用
收藏
页码:77 / 87
页数:11
相关论文
共 18 条
  • [1] The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans
    Armato, Samuel G., III
    McLennan, Geoffrey
    Bidaut, Luc
    McNitt-Gray, Michael F.
    Meyer, Charles R.
    Reeves, Anthony P.
    Zhao, Binsheng
    Aberle, Denise R.
    Henschke, Claudia I.
    Hoffman, Eric A.
    Kazerooni, Ella A.
    MacMahon, Heber
    van Beek, Edwin J. R.
    Yankelevitz, David
    Biancardi, Alberto M.
    Bland, Peyton H.
    Brown, Matthew S.
    Engelmann, Roger M.
    Laderach, Gary E.
    Max, Daniel
    Pais, Richard C.
    Qing, David P-Y
    Roberts, Rachael Y.
    Smith, Amanda R.
    Starkey, Adam
    Batra, Poonam
    Caligiuri, Philip
    Farooqi, Ali
    Gladish, Gregory W.
    Jude, C. Matilda
    Munden, Reginald F.
    Petkovska, Iva
    Quint, Leslie E.
    Schwartz, Lawrence H.
    Sundaram, Baskaran
    Dodd, Lori E.
    Fenimore, Charles
    Gur, David
    Petrick, Nicholas
    Freymann, John
    Kirby, Justin
    Hughes, Brian
    Casteele, Alessi Vande
    Gupte, Sangeeta
    Sallam, Maha
    Heath, Michael D.
    Kuhn, Michael H.
    Dharaiya, Ekta
    Burns, Richard
    Fryd, David S.
    [J]. MEDICAL PHYSICS, 2011, 38 (02) : 915 - 931
  • [2] cicek Ozgtin, 2016, INT C MED IM COMP CO, P424, DOI DOI 10.1007/978-3-319-46723-8_49
  • [3] Automatic airway segmentation from computed tomography using robust and efficient 3-D convolutional neural networks
    Garcia-Uceda, Antonio
    Selvan, Raghavendra
    Saghir, Zaigham
    Tiddens, Harm A. W. M.
    de Bruijne, Marleen
    [J]. SCIENTIFIC REPORTS, 2021, 11 (01)
  • [4] BUILDING SKELETON MODELS VIA 3-D MEDIAL SURFACE AXIS THINNING ALGORITHMS
    LEE, TC
    KASHYAP, RL
    CHU, CN
    [J]. CVGIP-GRAPHICAL MODELS AND IMAGE PROCESSING, 1994, 56 (06): : 462 - 478
  • [5] Extraction of Airways From CT (EXACT'09)
    Lo, Pechin
    van Ginneken, Bram
    Reinhardt, Joseph M.
    Yavarna, Tarunashree
    de Jong, Pim A.
    Irving, Benjamin
    Fetita, Catalin
    Ortner, Margarete
    Pinho, Romulo
    Sijbers, Jan
    Feuerstein, Marco
    Fabijanska, Anna
    Bauer, Christian
    Beichel, Reinhard
    Mendoza, Carlos S.
    Wiemker, Rafael
    Lee, Jaesung
    Reeves, Anthony P.
    Born, Silvia
    Weinheimer, Oliver
    van Rikxoort, Eva M.
    Tschirren, Juerg
    Mori, Ken
    Odry, Benjamin
    Naidich, David P.
    Hartmann, Ieneke
    Hoffman, Eric A.
    Prokop, Mathias
    Pedersen, Jesper H.
    de Bruijne, Marleen
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2012, 31 (11) : 2093 - 2107
  • [6] V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation
    Milletari, Fausto
    Navab, Nassir
    Ahmadi, Seyed-Ahmad
    [J]. PROCEEDINGS OF 2016 FOURTH INTERNATIONAL CONFERENCE ON 3D VISION (3DV), 2016, : 565 - 571
  • [7] Abdominal artery segmentation method from CT volumes using fully convolutional neural network
    Oda, Masahiro
    Roth, Holger R.
    Kitasaka, Takayuki
    Misawa, Kazunari
    Fujiwara, Michitaka
    Mori, Kensaku
    [J]. INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2019, 14 (12) : 2069 - 2081
  • [8] Qin YL, 2020, I S BIOMED IMAGING, P809, DOI [10.1109/ISBI45749.2020.9098537, 10.1109/isbi45749.2020.9098537]
  • [9] AirwayNet: A Voxel-Connectivity Aware Approach for Accurate Airway Segmentation Using Convolutional Neural Networks
    Qin, Yulei
    Chen, Mingjian
    Zheng, Hao
    Gu, Yun
    Shen, Mali
    Yang, Jie
    Huang, Xiaolin
    Zhu, Yue-Min
    Yang, Guang-Zhong
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT VI, 2019, 11769 : 212 - 220
  • [10] Tversky Loss Function for Image Segmentation Using 3D Fully Convolutional Deep Networks
    Salehi, Seyed Sadegh Mohseni
    Erdogmus, Deniz
    Gholipour, Ali
    [J]. MACHINE LEARNING IN MEDICAL IMAGING (MLMI 2017), 2017, 10541 : 379 - 387