NUMERICAL SOLUTION FOR STOCHASTIC VOLTERRA-FREDHOLM INTEGRAL EQUATIONS WITH DELAY ARGUMENTS

被引:2
|
作者
Yao, Kutorzi edwin [1 ,2 ]
Zhang, Yuxue [1 ,2 ]
Shi, Yufeng [1 ,2 ]
机构
[1] Shandong Univ, Inst Financial Studies, Jinan 250100, Peoples R China
[2] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
基金
国家重点研发计划;
关键词
Stochastic Volterra-Fredholm integral equations; block -pulse functions; It & ocirc; integral; delay; operational matrix; error analysis;
D O I
10.14311/AP.2024.64.0128
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
. We present a method for computing the stochastic operational matrix of integration to advance the study of stochastic Volterra-Fredholm integral equations (SVFIEs) based on delay arguments. First, the method evaluates the combined effects of the delay and its parameters on the accuracy improvement of the convergence rate. Our results can be applied to SVFIEs, with the operational delay matrices of the block pulse function simplified to algebraic ones. Numerical calculations were performed on a PC using Python 3 programs. Results also demonstrate the accuracy of approximate solutions; arithmetic operations are carried out without the need for derivation or integration.
引用
收藏
页码:128 / 141
页数:14
相关论文
共 50 条
  • [31] Numerical solution of nonlinear mixed Volterra-Fredholm integral equations in complex plane via PQWs
    Beiglo, H.
    Gachpazan, M.
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 369
  • [32] An Algorithm for the Solution of Nonlinear Volterra-Fredholm Integral Equations with a Singular Kernel
    Abusalim, Sahar M.
    Abdou, Mohamed A.
    Nasr, Mohamed E.
    Abdel-Aty, Mohamed A.
    FRACTAL AND FRACTIONAL, 2023, 7 (10)
  • [33] Existence of Solution via Integral Inequality of Volterra-Fredholm Neutral Functional Integrodifferential Equations with Infinite Delay
    Kucche, Kishor D.
    Dhakne, Andmachindra B.
    INTERNATIONAL JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 2014
  • [34] Numerical solution of fuzzy stochastic Volterra integral equations with constant delay
    Wen, Xiaoxia
    Malinowski, Marek T.
    Li, Hu
    Liu, Hongyan
    Li, Yan
    FUZZY SETS AND SYSTEMS, 2024, 493
  • [35] Numerical Solutions of Stochastic Volterra-Fredholm Integral Equations by Hybrid Legendre Block-Pulse Functions
    Ray, S. Saha
    Singh, S.
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2018, 19 (3-4) : 289 - 297
  • [36] Moving least squares and spectral collocation method to approximate the solution of stochastic Volterra-Fredholm integral equations
    Mirzaee, Farshid
    Solhi, Erfan
    Samadyar, Nasrin
    APPLIED NUMERICAL MATHEMATICS, 2021, 161 : 275 - 285
  • [37] Numerical Approximation of Stochastic Volterra-Fredholm Integral Equation using Walsh Function
    Paikaray, Prit Pritam
    Beuria, Sanghamitra
    Parida, Nigam Chandra
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2023, 14 (05): : 1603 - 1613
  • [38] Numerical solution of nonlinear Volterra-Fredholm integro-differential equations
    Darania, P.
    Ivaz, K.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (09) : 2197 - 2209
  • [39] New computational method for Volterra-Fredholm integral equations
    School of Mathematics, Iran Univ. of Science and Technology, Tehran-16, Iran
    Comput Math Appl, 9 (1-8):
  • [40] ON MIXED VOLTERRA-FREDHOLM TYPE INTEGRAL-EQUATIONS
    PACHPATTE, BG
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1986, 17 (04): : 488 - 496