ON NUMERICAL SIMULATION OF FLUID-STRUCTURE INTERACTION PROBLEMS BY DISCONTINUOUS GALERKIN AND FINITE VOLUME TECHNIQUES

被引:0
|
作者
Winter, O. [1 ,2 ]
Svacek, P. [1 ,2 ]
机构
[1] Czech Tech Univ, Dept Tech Math, Fac Mech Engn, Karlovo Namesti 13, Prague 12135 2, Czech Republic
[2] Univ Czech Tech Univ Prague, Ctr Aviat & Space Res, Fac Mech Engn, Tech 4, Prague 16607 6, Czech Republic
来源
TOPICAL PROBLEMS OF FLUID MECHANICS 2022 | 2022年
关键词
discontinuous Galerkin method; finite volume method; fluid-structure interaction;
D O I
10.14311/TPFM.2022.026
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This work focuses on application of a high-order accurate scheme for coupled fluid-structure interaction problems. A simplified mathematical model is considered consisting of the Navier-Stokes equations describing the compressible fluid flow and the equation of motion describing the movement of a structure. The fluid flow is discretized using a discontinuous Galerkin method on unstructured triangular meshes, and the structure uses high-order explicit Runge-Kutta method. Results obtained by presented scheme and OpenFOAM's implementation of a finite volume scheme are compared.
引用
收藏
页码:194 / 200
页数:7
相关论文
共 50 条
  • [31] Numerical comparison of hybridized discontinuous Galerkin and finite volume methods for incompressible flow
    Ahnert, T.
    Baerwolff, G.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2014, 76 (05) : 267 - 281
  • [32] A finite volume method on NURBS geometries and its application in isogeometric fluid-structure interaction
    Heinrich, Ch
    Simeon, B.
    Boschert, St
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2012, 82 (09) : 1645 - 1666
  • [33] Eulerian finite volume formulation using Lagrangian marker particles for incompressible fluid-structure interaction problems
    Shimada, Tokimasa
    Nishiguchi, Koji
    Bale, Rahul
    Okazawa, Shigenobu
    Tsubokura, Makoto
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2022, 123 (05) : 1294 - 1328
  • [34] AN IMMERSED SMOOTHED FINITE ELEMENT METHOD FOR FLUID-STRUCTURE INTERACTION PROBLEMS
    Zhang, Zhi-Qian
    Yao, Jianyao
    Liu, G. R.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2011, 8 (04) : 747 - 757
  • [35] A Lagrangian finite element approach for the analysis of fluid-structure interaction problems
    Cremonesi, M.
    Frangi, A.
    Perego, U.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2010, 84 (05) : 610 - 630
  • [36] A Mass Conservative Scheme for Fluid–Structure Interaction Problems by the Staggered Discontinuous Galerkin Method
    Siu Wun Cheung
    Eric Chung
    Hyea Hyun Kim
    Journal of Scientific Computing, 2018, 74 : 1423 - 1456
  • [37] Least squares finite element methods for fluid-structure interaction problems
    Kayser-Herold, O
    Matthies, HG
    COMPUTERS & STRUCTURES, 2005, 83 (2-3) : 191 - 207
  • [38] Analysis of finite element and finite volume methods for fluid-structure interaction simulation of blood flow in a real stenosed artery
    Lopes, D.
    Agujetas, R.
    Puga, H.
    Teixeira, J.
    Lima, R.
    Alejo, J. P.
    Ferrera, C.
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2021, 207
  • [39] Numerical benchmarking of fluid-structure interaction: An isogeometric finite element approach
    Nordanger, Knut
    Rasheed, Adil
    Okstad, Knut Morten
    Kvarving, Arne Morten
    Holdahl, Runar
    Kvamsdal, Trond
    OCEAN ENGINEERING, 2016, 124 : 324 - 339
  • [40] Benchmarking the immersed finite element method for fluid-structure interaction problems
    Roy, Saswati
    Heltai, Luca
    Costanzo, Francesco
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2015, 69 (10) : 1167 - 1188