Semantic similarity metrics for learned image registration

被引:0
|
作者
Czolbe, Steffen [1 ]
Krause, Oswin [1 ]
Feragen, Aasa [2 ]
机构
[1] Univ Copenhagen, Dept Comp Sci, Copenhagen, Denmark
[2] Tech Univ Denmark, DTU Compute, Lyngby, Denmark
来源
MEDICAL IMAGING WITH DEEP LEARNING, VOL 143 | 2021年 / 143卷
关键词
Image Registration; Deep Learning; Representation Learning; FRAMEWORK;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a semantic similarity metric for image registration. Existing metrics like Euclidean Distance or Normalized Cross-Correlation focus on aligning intensity values, giving difficulties with low intensity contrast or noise. Our approach learns dataset-specific features that drive the optimization of a learning-based registration model. We train both an unsupervised approach using an auto-encoder, and a semi-supervised approach using supplemental segmentation data to extract semantic features for image registration. Comparing to existing methods across multiple image modalities and applications, we achieve consistently high registration accuracy. A learned invariance to noise gives smoother transformations on low-quality images. Code and experiments are available at github.com/SteffenCzolbe/DeepSimRegistration.
引用
收藏
页码:105 / 118
页数:14
相关论文
共 50 条
  • [31] SPARSE BASED SIMILARITY MEASURE FOR MONO-MODAL IMAGE REGISTRATION
    Ghaffari, A.
    Fatemizadeh, E.
    2013 8TH IRANIAN CONFERENCE ON MACHINE VISION & IMAGE PROCESSING (MVIP 2013), 2013, : 462 - 466
  • [32] Unsupervised Similarity Learning for Image Registration with Energy-Based Models
    Grzech, Daniel
    Le Folgoc, Loic
    Azampour, Mohammad Farid
    Vlontzos, Athanasios
    Glocker, Ben
    Navab, Nassir
    Schnabel, Julia
    Kainz, Bernhard
    BIOMEDICAL IMAGE REGISTRATION, WBIR 2024, 2025, 15249 : 229 - 240
  • [33] New calculation method of image similarity for endoscope tracking based on image registration in endoscope navigation
    Deguchi, D
    Mori, K
    Suenaga, Y
    Hasegawa, J
    Toriwaki, J
    Natori, H
    Takabatake, H
    CARS 2003: COMPUTER ASSISTED RADIOLOGY AND SURGERY, PROCEEDINGS, 2003, 1256 : 460 - 466
  • [34] Intersensor Remote Sensing Image Registration Using Multispectral Semantic Embeddings
    Fernandez-Beltran, Ruben
    Pla, Filiberto
    Plaza, Antonio
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2019, 16 (10) : 1545 - 1549
  • [35] WSSAMNet: Weakly Supervised Semantic Attentive Medical Image Registration Network
    Nasser, Sahar Almahfouz
    Kurian, Nikhil Cherian
    Meena, Mohit
    Shamsi, Saqib
    Sethi, Amit
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2022, PT II, 2023, 14092 : 15 - 24
  • [36] Study on Correlation Between Subjective and Objective Metrics for Multimodal Retinal Image Registration
    Wang, Yiqian
    Zhang, Junkang
    Cavichini, Melina
    Bartsch, Dirk-Uwe G.
    Freeman, William R.
    Nguyen, Truong Q.
    An, Cheolhong
    IEEE ACCESS, 2020, 8 : 190897 - 190905
  • [37] Learning to Embed Semantic Similarity for Joint Image-Text Retrieval
    Malali, Noam
    Keller, Yosi
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (12) : 10252 - 10260
  • [38] Generalised 3D Medical Image Registration with Learned Shape Encodings
    Grossbroehmer, Christoph
    Heinrich, Mattias P.
    MEDICAL IMAGE UNDERSTANDING AND ANALYSIS, MIUA 2023, 2024, 14122 : 268 - 280
  • [39] IMAGE REGISTRATION WITH OPTIMAL REGULARIZATION PARAMETER SELECTION BY LEARNED AUTO ENCODER FEATURES
    Akossi, Aurelie
    Wang, Fusheng
    Teodoro, George
    Kong, Jun
    2021 IEEE 18TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2021, : 702 - 705
  • [40] Variational image registration with learned prior using multi-stage VAEs
    Hua Y.
    Xu K.
    Yang X.
    Computers in Biology and Medicine, 2024, 178