Semantic similarity metrics for learned image registration

被引:0
|
作者
Czolbe, Steffen [1 ]
Krause, Oswin [1 ]
Feragen, Aasa [2 ]
机构
[1] Univ Copenhagen, Dept Comp Sci, Copenhagen, Denmark
[2] Tech Univ Denmark, DTU Compute, Lyngby, Denmark
来源
MEDICAL IMAGING WITH DEEP LEARNING, VOL 143 | 2021年 / 143卷
关键词
Image Registration; Deep Learning; Representation Learning; FRAMEWORK;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a semantic similarity metric for image registration. Existing metrics like Euclidean Distance or Normalized Cross-Correlation focus on aligning intensity values, giving difficulties with low intensity contrast or noise. Our approach learns dataset-specific features that drive the optimization of a learning-based registration model. We train both an unsupervised approach using an auto-encoder, and a semi-supervised approach using supplemental segmentation data to extract semantic features for image registration. Comparing to existing methods across multiple image modalities and applications, we achieve consistently high registration accuracy. A learned invariance to noise gives smoother transformations on low-quality images. Code and experiments are available at github.com/SteffenCzolbe/DeepSimRegistration.
引用
收藏
页码:105 / 118
页数:14
相关论文
共 50 条
  • [21] Medical Image Registration Using Mutual Information Similarity Measure
    Khalifa, Mohamed E.
    Elmessiry, Haitham M.
    ElBahnasy, Khaled A.
    Ramadan, Hassan M. M.
    13TH INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING, VOLS 1-3, 2009, 23 (1-3): : 151 - +
  • [22] Approach of spectral information-based image registration similarity
    Cui, Jinhui
    Zhang, Shanshan
    Jiang, Ziyin
    Liu, Ping
    Li, Li
    JOURNAL OF APPLIED REMOTE SENSING, 2020, 14 (02):
  • [23] Robust Huber similarity measure for image registration in the presence of spatially-varying intensity distortion
    Ghaffari, Aboozar
    Fatemizadeh, Emad
    SIGNAL PROCESSING, 2015, 109 : 54 - 68
  • [24] A NEW SIMILARITY MEASURE FOR DEFORMABLE IMAGE REGISTRATION BASED ON INTENSITY MATCHING
    Lu, Yongning
    Sun, Ying
    Liao, Rui
    Ong, Sim Heng
    2013 IEEE 10TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2013, : 234 - 237
  • [25] A detector of structural similarity for multi-modal microscopic image registration
    Lv, Guohua
    Teng, Shyh Wei
    Lu, Guojun
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (06) : 7675 - 7701
  • [26] A detector of structural similarity for multi-modal microscopic image registration
    Guohua Lv
    Shyh Wei Teng
    Guojun Lu
    Multimedia Tools and Applications, 2018, 77 : 7675 - 7701
  • [27] SELF-SIMILARITY MEASURE FOR MULTI-MODAL IMAGE REGISTRATION
    Kasiri, Keyvan
    Fieguth, Paul
    Clausi, David A.
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 4498 - 4502
  • [28] Cosine Similarity Template Matching Networks for Optical and SAR Image Registration
    Xiong, Wenxuan
    Sun, Mingyu
    Du, Hua
    Xiong, Bangshu
    Zhang, Congxuan
    Ou, Qiaofeng
    Rao, Zhibo
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2025, 18 : 813 - 827
  • [29] COMBINED USE OF MULTIMODAL SIMILARITY MEASURES FOR VISUAL TO RADAR IMAGE REGISTRATION
    Uss, M. L.
    Vozel, B.
    Lukin, V. V.
    Chehdi, K.
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 8881 - 8884
  • [30] PCNet: A structure similarity enhancement method for multispectral and multimodal image registration
    Cao, Si-Yuan
    Yu, Beinan
    Luo, Lun
    Zhang, Runmin
    Chen, Shu-Jie
    Li, Chunguang
    Shen, Hui-Liang
    INFORMATION FUSION, 2023, 94 : 200 - 214