Semantic similarity metrics for learned image registration

被引:0
|
作者
Czolbe, Steffen [1 ]
Krause, Oswin [1 ]
Feragen, Aasa [2 ]
机构
[1] Univ Copenhagen, Dept Comp Sci, Copenhagen, Denmark
[2] Tech Univ Denmark, DTU Compute, Lyngby, Denmark
来源
MEDICAL IMAGING WITH DEEP LEARNING, VOL 143 | 2021年 / 143卷
关键词
Image Registration; Deep Learning; Representation Learning; FRAMEWORK;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a semantic similarity metric for image registration. Existing metrics like Euclidean Distance or Normalized Cross-Correlation focus on aligning intensity values, giving difficulties with low intensity contrast or noise. Our approach learns dataset-specific features that drive the optimization of a learning-based registration model. We train both an unsupervised approach using an auto-encoder, and a semi-supervised approach using supplemental segmentation data to extract semantic features for image registration. Comparing to existing methods across multiple image modalities and applications, we achieve consistently high registration accuracy. A learned invariance to noise gives smoother transformations on low-quality images. Code and experiments are available at github.com/SteffenCzolbe/DeepSimRegistration.
引用
收藏
页码:105 / 118
页数:14
相关论文
共 50 条
  • [1] Semantic similarity metrics for image registration
    Czolbe, Steffen
    Pegios, Paraskevas
    Krause, Oswin
    Feragen, Aasa
    MEDICAL IMAGE ANALYSIS, 2023, 87
  • [2] Applicability and performance of some similarity metrics for automated image registration
    Suri, Sahil
    Arora, Manoj K.
    Seiler, Ralf
    Csaplovics, Elmar
    MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL REMOTE SENSING TECHNOLOGY, TECHNIQUES, AND APPLICATIONS, 2006, 6405
  • [3] Challenging the Robustness of Image Registration Similarity Metrics with Adversarial Attacks
    Rexeisen, Robin
    Jiang, Xiaoyi
    BIOMEDICAL IMAGE REGISTRATION, WBIR 2024, 2025, 15249 : 112 - 126
  • [4] Generalized mutual information similarity metrics for multimodal biomedical image registration
    Wachowiak, MP
    Smolíková, R
    Tourassi, GD
    Elmaghraby, AS
    SECOND JOINT EMBS-BMES CONFERENCE 2002, VOLS 1-3, CONFERENCE PROCEEDINGS: BIOENGINEERING - INTEGRATIVE METHODOLOGIES, NEW TECHNOLOGIES, 2002, : 1005 - 1006
  • [5] Nonrigid Image Registration Using an Entropic Similarity
    Khader, Mohammed
    Ben Hamza, A.
    IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 2011, 15 (05): : 681 - 690
  • [6] SuperFusion: A Versatile Image Registration and Fusion Network with Semantic Awareness
    Tang, Linfeng
    Deng, Yuxin
    Ma, Yong
    Huang, Jun
    Ma, Jiayi
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2022, 9 (12) : 2121 - 2137
  • [7] Similarity metrics based on nonadditive entropies for 2D-3D multimodal biomedical image registration
    Wachowiak, MP
    Smolilcova, R
    Tourassi, GD
    Elmaghraby, AS
    MEDICAL IMAGING 2003: IMAGE PROCESSING, PTS 1-3, 2003, 5032 : 1090 - 1100
  • [8] The comparison of the similarity metric in medical image registration
    Yang, CL
    Zheng, L
    ISTM/2005: 6TH INTERNATIONAL SYMPOSIUM ON TEST AND MEASUREMENT, VOLS 1-9, CONFERENCE PROCEEDINGS, 2005, : 6343 - 6346
  • [9] Double Similarity Distillation for Semantic Image Segmentation
    Feng, Yingchao
    Sun, Xian
    Diao, Wenhui
    Li, Jihao
    Gao, Xin
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 5363 - 5376
  • [10] Selective image similarity measure for bronchoscope tracking based on image registration
    Deguchi, Daisuke
    Mori, Kensaku
    Feuerstein, Marco
    Kitasaka, Takayuki
    Maurer, Calvin R., Jr.
    Suenaga, Yasuhito
    Takabatake, Hirotsugu
    Mori, Masaki
    Natori, Hiroshi
    MEDICAL IMAGE ANALYSIS, 2009, 13 (04) : 621 - 633