Usable observations over Europe: evaluation of compositing windows for Landsat and Sentinel-2 time series

被引:2
|
作者
Lewinska, Katarzyna Ewa [1 ,2 ]
Frantz, David [3 ]
Leser, Ulf [4 ]
Hostert, Patrick [1 ,5 ]
机构
[1] Humboldt Univ, Geog Dept, Unter Linden 6, D-10099 Berlin, Germany
[2] Univ Wisconsin, Dept Forest & Wildlife Ecol, SILVIS Lab, Madison, WI USA
[3] Trier Univ, Geoinformat Spatial Data Sci, Trier, Germany
[4] Humboldt Univ, Dept Comp Sci, Berlin, Germany
[5] Humboldt Univ, Integrat Res Inst Transformat Human Environm Syst, Geog, Berlin, Germany
关键词
Time-series; data availability; aggregation; long-term analyses; MODIS SURFACE REFLECTANCE; SPECTRAL-TEMPORAL METRICS; NATIONAL-SCALE; REVISIT INTERVAL; COVER DYNAMICS; VEGETATION; CLASSIFICATION; CLOUD; ALGORITHMS; WATER;
D O I
10.1080/22797254.2024.2372855
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Landsat and Sentinel-2 data archives provide ever-increasing amounts of satellite data. However, the availability of usable observations greatly varies spatially and temporally. Pixel-based compositing that generates temporally equidistant cloud-free synthetic images can mitigate temporal variability, by constructing uninterrupted time series using different compositing windows. Here, we evaluated the feasibility of using compositing windows ranging from five days to one year for 1984-2021 Landsat and 2015-2021 Sentinel 2 time series to derive uninterrupted time series across Europe. We considered separate and joint use of both data archives and analyzed the spatio-temporal availability of composites during each calendar year and pixel-specific growing season across a variety of time windows and hypothesizing data interpolation. Our results demonstrated opportunities and limitations in the available data records to support medium- and long-term analyses requiring uninterrupted time series of composites with sub-annual temporal resolution. Spatial disparities across different compositing windows provide guidance on the feasibility of workflows relying on different data densities and on the challenges in wall-to-wall analyses. The feasibility of consistent time series based on composites with sub-monthly aggregation periods was mostly limited to the combined Landsat and Sentinel-2 archives after 2015, yet in some geographies requires interpolation of up to 50% of data.
引用
收藏
页数:28
相关论文
共 50 条
  • [41] Integrating Landsat-8 and Sentinel-2 Time Series Data for Yield Prediction of Sugarcane Crops at the Block Level
    Rahman, Muhammad Moshiur
    Robson, Andrew
    REMOTE SENSING, 2020, 12 (08)
  • [42] Improving the Accuracy of Fractional Evergreen Forest Cover Estimation at Subpixel Scale in Cloudy and Rainy Areas by Harmonizing Landsat-8 and Sentinel-2 Time-Series Data
    Wu, Taixia
    Zhao, Yuting
    Wang, Shudong
    Su, Hongjun
    Yang, Yingying
    Jia, Dongzhen
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 3373 - 3385
  • [43] Evaluation of Vegetation Biophysical Variables Time Series Derived from Synthetic Sentinel-2 Images
    Djamai, Najib
    Zhong, Detang
    Fernandes, Richard
    Zhou, Fuqun
    REMOTE SENSING, 2019, 11 (13)
  • [44] A deep learning framework for crop mapping with reconstructed Sentinel-2 time series images
    Feng, Fukang
    Gao, Maofang
    Liu, Ronghua
    Yao, Shuihong
    Yang, Guijun
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2023, 213
  • [45] Mapping bedrock with vegetation spectral features using time series Sentinel-2 images
    Lu, Yi
    Yang, Changbao
    Han, Liguo
    GEOCARTO INTERNATIONAL, 2023, 38 (01)
  • [46] Framework for Automatic Coral Reef Extraction Using Sentinel-2 Image Time Series
    Zhuang, Qizhi
    Zhang, Jian
    Cheng, Liang
    Chen, Hui
    Song, Yanruo
    Chen, Song
    Chu, Sensen
    Dongye, Shengkun
    Li, Manchun
    MARINE GEODESY, 2022, 45 (03) : 195 - 231
  • [47] Mapping abandoned cropland using Within-Year Sentinel-2 time series
    Liu, Bo
    Song, Wei
    CATENA, 2023, 223
  • [48] Integration of Time Series Sentinel-1 and Sentinel-2 Imagery for Crop Type Mapping over Oasis Agricultural Areas
    Sun, Luyi
    Chen, Jinsong
    Guo, Shanxin
    Deng, Xinping
    Han, Yu
    REMOTE SENSING, 2020, 12 (01)
  • [49] Exploiting Time Series of Sentinel-1 and Sentinel-2 Imagery to Detect Meadow Phenology in Mountain Regions
    Stendardi, Laura
    Karlsen, Stein Rune
    Niedrist, Georg
    Gerdol, Renato
    Zebisch, Marc
    Rossi, Mattia
    Notarnicola, Claudia
    REMOTE SENSING, 2019, 11 (05)
  • [50] Functional Analysis for Habitat Mapping in a Special Area of Conservation Using Sentinel-2 Time-Series Data
    Pesaresi, Simone
    Mancini, Adriano
    Quattrini, Giacomo
    Casavecchia, Simona
    REMOTE SENSING, 2022, 14 (05)