Genetic Algorithm-driven Image Processing Pipeline for Classifying Three Bird Species: An Empirical Study of Two Encoding

被引:0
作者
Vidal-Ramirez, Maria Mercedes [1 ]
Perez-Castro, Nancy [1 ]
Becerril Morales, Felipe [1 ]
Lopez-Rodriguez, Ariel [1 ]
Zuniga-Marroquin, Tania [1 ]
Ruiz-Paz, Sergio Fabian [1 ]
Diaz-Felix, Gabriela [2 ]
机构
[1] Univ Papaloapan, Ave Ferrocarril S-N,Ciudad Univ, Loma Bonita, Oaxaca, Mexico
[2] Univ Veracruzana, Cto Aguirre Beltran S-N, Xalapa, Veracruz, Mexico
来源
2023 MEXICAN INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE, ENC | 2024年
关键词
image processing; pipelines; classification; birds; citizen science;
D O I
10.1109/ENC60556.2023.10508665
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces iGRACE, a genetic algorithm designed to tackle the challenge of constructing and optimizing image processing pipelines, including hyperparameters. The pipelines encompass vital tasks such as noise filtering, image segmentation, feature extraction, and classification. The optimization process centers around minimizing the Cross Validation Error Rate (CVER) through the tailored selection of hyperparameters. In this study, the efficacy of iGRACE is examined using two distinct encodings: mixed and binary. While both encodings showcase comparable performance based on numerical metrics, the binary encoding outperforms the mixed encoding in terms of numerical results and execution time. However, what sets iGRACE apart is its unique attribute of providing interpretable and explainable solutions, particularly evident when comparing its results with those of a Convolutional Neural Network (CNN). Although no statistically significant differences emerge between the two encodings, a closer examination of the visual outcomes underscores iGRACE's strength in generating image processing pipelines that are more intuitive and comprehensible for endusers when employing the mixed encoding. Notably, this insight highlights the trade-off between numerical superiority and the interpretability advantage offered by iGRACE. Furthermore, there is room for improvement in the accuracy of numerical prediction values in the realm of classification. This signifies a potential avenue for future refinements to enhance the algorithm's predictive capabilities.
引用
收藏
页数:9
相关论文
共 21 条
  • [1] Binder M, 2021, J MACH LEARN RES, V22
  • [2] Bird communities and habitat as ecological indicators of forest condition in regional monitoring
    Canterbury, GE
    Martin, TE
    Petit, DR
    Petit, LJ
    Bradford, DF
    [J]. CONSERVATION BIOLOGY, 2000, 14 (02) : 544 - 558
  • [3] Contribution of citizen science towards international biodiversity monitoring
    Chandler, Mark
    See, Linda
    Copas, Kyle
    Bonde, Astrid M. Z.
    Lopez, Bernat Claramunt
    Danielsen, Finn
    Legind, Jan Kristoffer
    Masinde, Siro
    Miller-Rushing, Abraham J.
    Newman, Greg
    Rosemartin, Alyssa
    Turak, Eren
    [J]. BIOLOGICAL CONSERVATION, 2017, 213 : 280 - 294
  • [4] Comision Nacional para el Conocimiento y Uso de la Biodiversidad, 2022, CONABIO-Comision Nacional para el Conocimiento y Uso de la Biodiversidad
  • [5] Towards Automatic Image Enhancement with Genetic Programming and Machine Learning
    Correia, Joao
    Rodriguez-Fernandez, Nereida
    Vieira, Leonardo
    Romero, Juan
    Machado, Penousal
    [J]. APPLIED SCIENCES-BASEL, 2022, 12 (04):
  • [6] Cortacero K, 2023, Arxiv, DOI arXiv:2302.14762
  • [7] Interpretable pipelines with evolutionarily optimized modules for reinforcement learning tasks with visual inputs
    Custode, Leonardo Lucio
    Iacca, Giovanni
    [J]. PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2022, 2022, : 224 - 227
  • [8] Fogel DB, 2006, EVOLUTIONARY COMPUTATION: TOWARD A NEW PHILOSOPHY OF MACHINE INTELLIGENCE, 3RD EDITION, P1, DOI 10.1002/0471749214
  • [9] Gobierno de Mexico, La relevancia de las aves en Mexico
  • [10] Evolutionary optimization of image processing for cell detection in microscopy images
    Haghofer, Andreas
    Dorl, Sebastian
    Oszwald, Andre
    Breuss, Johannes
    Jacak, Jaroslaw
    Winkler, Stephan M.
    [J]. SOFT COMPUTING, 2020, 24 (23) : 17847 - 17862