On finite groups with some Hall normally embedded subgroups

被引:2
|
作者
Meng, Wei [1 ,2 ]
Lu, Jiakuan [3 ]
机构
[1] Guilin Univ Elect Technol, Sch Math & Comp Sci, Guilin 541002, Guangxi, Peoples R China
[2] Southern Univ Sci & Technol, SUSTech Int Ctr Math, Shenzhen 518055, Guangdong, Peoples R China
[3] Guangxi Normal Univ, Sch Math & Stat, Guilin 541004, Guangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Hall normally embedded; minimal subgroup; maximal subgroup; solvable group; MINIMAL SUBGROUPS;
D O I
10.1142/S0219498825501907
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a finite group. A subgroup H of G is called Hall normally embedded in G if H is a Hall subgroup of HG, where HG is the normal closure of H in G, that is, the smallest normal subgroup of G containing H. A group G is called a PHN-group if its all minimal subgroups and cyclic subgroup of order 4 are Hall normally embedded in G. In this paper, we give the classification of minimal non-PHN-groups. Furthermore, we investigate the structure of finite group all of whose maximal subgroups of even order are PHN-groups.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Finite groups with given nearly Sφ-embedded subgroups
    Amjid, Venus
    Cao, Chenchen
    Mao, Yuemei
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2021, 14 (08)
  • [32] On S-permutably embedded subgroups of finite groups
    Ballester-Bolinches, A.
    Li, Yangming
    MONATSHEFTE FUR MATHEMATIK, 2013, 172 (3-4): : 247 - 257
  • [33] Finite groups with sn-embedded or s-embedded subgroups
    Malinowska, I. A.
    ACTA MATHEMATICA HUNGARICA, 2012, 136 (1-2) : 76 - 89
  • [34] FINITE GROUPS WITH SOME SUBGROUPS OF SYLOW SUBGROUPS s*-SEMIPERMUTABLE
    Kong, Qingjun
    Guo, Xiuyun
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2021, 58 (02) : 147 - 156
  • [35] Semipermutable subgroups and s-semipermutable subgroups in finite groups
    Li, Yangming
    FRONTIERS OF MATHEMATICS IN CHINA, 2022, 17 (01) : 23 - 46
  • [36] Finite groups with some H-subgroups
    Li, Xianhua
    Zhao, Tao
    Xu, Yong
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2011, 21 (1-2): : 106 - 111
  • [37] Finite groups with some weakly pronormal subgroups
    Liu, Jianjun
    Jiang, Mengling
    Chen, Guiyun
    OPEN MATHEMATICS, 2020, 18 : 1742 - 1747
  • [38] On some primary subgroups and the structure of finite groups
    Kang, Ping
    MONATSHEFTE FUR MATHEMATIK, 2014, 173 (04): : 519 - 527
  • [39] Finite groups with some SB-subgroups
    Lu, Jiakuan
    Zhang, Xueqin
    Meng, Wei
    Zhang, Boru
    COMMUNICATIONS IN ALGEBRA, 2023, 51 (01) : 161 - 167
  • [40] Finite groups whose maximal subgroups have the hall property
    Maslova N.V.
    Revin D.O.
    Siberian Advances in Mathematics, 2013, 23 (3) : 196 - 209