Polymer assisted deposition of YIG thin films with thickness control for spintronics applications

被引:1
作者
Corcuera, Ruben [1 ,2 ]
Jimenez-Cavero, Pilar [3 ]
Perez del Real, Rafael [4 ]
Rivadulla, Francisco [5 ,6 ]
Ramos, Rafael [5 ,6 ]
Morales-Aragones, Jose Ignacio [1 ,2 ]
Sangiao, Soraya [1 ,2 ]
Magen, Cesar [1 ,2 ]
Morellon, Luis [1 ,2 ]
Lucas, Irene [1 ,2 ]
机构
[1] Univ Zaragoza, Inst Nanociencia & Mat Aragon, CSIC, Zaragoza 50009, Spain
[2] Univ Zaragoza, Dept Fis Mat Condensada, Zaragoza 50009, Spain
[3] Ctr Univ Def, Acad Gen Mil, Zaragoza 50090, Spain
[4] CSIC, Inst Ciencia Mat, Madrid 28049, Spain
[5] Univ Santiago Compostela, Ctr Singular Invest Quim Biolox & Mat Mol CiQUS, Santiago De Compostela 15705, Spain
[6] Univ Santiago De Compostela, Dept Quim Fis, CITMAGA, Santiago De Compostela, Spain
来源
APL MATERIALS | 2024年 / 12卷 / 08期
关键词
YTTRIUM-IRON-GARNET; CRYSTAL-STRUCTURE; ROOM-TEMPERATURE;
D O I
10.1063/5.0223260
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The use of magnetic garnets in new technologies such as spintronic devices requires fine-structured thin films. Classical fabrication techniques for these materials, typically physical vapor deposition methods, lead to excellent magnetic behavior. However, availability and scalability for potential applications are well restricted. In this study, we propose an innovative approach to fabricating Yttrium Iron Garnet thin films with precise thickness control achieved through iterative layer deposition via a chemical synthesis route. Remarkably, the iterative deposition process results in films exhibiting exceptional crystallinity. Magnetic characterization provides saturation magnetization and coercivity values on par with those reported in literature, summed to narrow ferromagnetic resonance lines. Therefore, in this work we demonstrate the viability of polymer assisted deposition as a promising alternative thinking about scalability to conventional deposition techniques for this material. Notably, our findings reveal energy conversion efficiencies comparable to those achieved with materials synthesized via physical vapor deposition methods.
引用
收藏
页数:8
相关论文
共 47 条
[1]   Theory of the spin Seebeck effect [J].
Adachi, Hiroto ;
Uchida, Ken-ichi ;
Saitoh, Eiji ;
Maekawa, Sadamichi .
REPORTS ON PROGRESS IN PHYSICS, 2013, 76 (03)
[2]   Ferrite devices and materials [J].
Adam, JD ;
Davis, LE ;
Dionne, GF ;
Schloemann, EF ;
Stitzer, SN .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2002, 50 (03) :721-737
[3]   Pure spin currents in magnetically ordered insulator/normal metal heterostructures [J].
Althammer, Matthias .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2018, 51 (30)
[4]   Characteristic length scale of the magnon accumulation in Fe3O4/Pt bilayer structures by incoherent thermal excitation [J].
Anadon, A. ;
Ramos, R. ;
Lucas, I. ;
Algarabel, P. A. ;
Morellon, L. ;
Ibarra, M. R. ;
Aguirre, M. H. .
APPLIED PHYSICS LETTERS, 2016, 109 (01)
[5]   MOLECULAR FIELD MODEL + MAGNETIZATION OF YIG [J].
ANDERSON, EE .
PHYSICAL REVIEW, 1964, 134 (6A) :1581-+
[6]   Thermal Spin Dynamics of Yttrium Iron Garnet [J].
Barker, Joseph ;
Bauer, Gerrit E. W. .
PHYSICAL REVIEW LETTERS, 2016, 117 (21)
[7]  
Bauer GEW, 2012, NAT MATER, V11, P391, DOI [10.1038/NMAT3301, 10.1038/nmat3301]
[8]   Temperature Dependence of Magnetic Properties of a Ultrathin Yttrium-Iron Garnet Film Grown by Liquid Phase Epitaxy: Effect of a Pt Overlayer [J].
Beaulieu, Nathan ;
Kervarec, Nelly ;
Thiery, Nicolas ;
Klein, Olivier ;
Naletov, Vladimir ;
Hurdequint, Herve ;
de Loubens, Gregoire ;
Ben Youssef, Jamal ;
Vukadinovic, Nicolas .
IEEE MAGNETICS LETTERS, 2018, 9
[9]   Nanometer-Thick Yttrium Iron Garnet Films With Extremely Low Damping [J].
Chang, Houchen ;
Li, Peng ;
Zhang, Wei ;
Liu, Tao ;
Hoffmann, Axel ;
Deng, Longjiang ;
Wu, Mingzhong .
IEEE MAGNETICS LETTERS, 2014, 5
[10]   Advances in Magnetics Roadmap on Spin-Wave Computing [J].
Chumak, A. V. ;
Kabos, P. ;
Wu, M. ;
Abert, C. ;
Adelmann, C. ;
Adeyeye, A. O. ;
Akerman, J. ;
Aliev, F. G. ;
Anane, A. ;
Awad, A. ;
Back, C. H. ;
Barman, A. ;
Bauer, G. E. W. ;
Becherer, M. ;
Beginin, E. N. ;
Bittencourt, V. A. S. V. ;
Blanter, Y. M. ;
Bortolotti, P. ;
Boventer, I. ;
Bozhko, D. A. ;
Bunyaev, S. A. ;
Carmiggelt, J. J. ;
Cheenikundil, R. R. ;
Ciubotaru, F. ;
Cotofana, S. ;
Csaba, G. ;
Dobrovolskiy, O. V. ;
Dubs, C. ;
Elyasi, M. ;
Fripp, K. G. ;
Fulara, H. ;
Golovchanskiy, I. A. ;
Gonzalez-Ballestero, C. ;
Graczyk, P. ;
Grundler, D. ;
Gruszecki, P. ;
Gubbiotti, G. ;
Guslienko, K. ;
Haldar, A. ;
Hamdioui, S. ;
Hertel, R. ;
Hillebrands, B. ;
Hioki, T. ;
Houshang, A. ;
Hu, C. -M. ;
Huebl, H. ;
Huth, M. ;
Iacocca, E. ;
Jungfleisch, M. B. ;
Kakazei, G. N. .
IEEE TRANSACTIONS ON MAGNETICS, 2022, 58 (06)