Dense Multiagent Reinforcement Learning Aided Multi-UAV Information Coverage for Vehicular Networks

被引:5
|
作者
Fu, Hang [1 ,2 ]
Wang, Jingjing [1 ,2 ]
Chen, Jianrui [1 ,3 ]
Ren, Pengfei [1 ]
Zhang, Zheng [1 ]
Zhao, Guodong [4 ]
机构
[1] Beihang Univ, Sch Cyber Sci & Technol, Beijing 100191, Peoples R China
[2] Xidian Univ, State Key Lab Integrated Serv Networks, Xian 710071, Peoples R China
[3] Peng Cheng Lab, Shenzhen 518000, Peoples R China
[4] Beihang Univ, Sch Aeronaut Sci & Engn, Beijing 100191, Peoples R China
来源
IEEE INTERNET OF THINGS JOURNAL | 2024年 / 11卷 / 12期
关键词
Heuristic algorithms; Autonomous aerial vehicles; Vehicle dynamics; Training; Internet of Things; Energy consumption; Decision making; Communication coverage; dense reinforcement learning; distributed multiunmanned aerial vehicle (UAV); multiagent reinforcement learning (MARL); vehicular networks; RESOURCE-ALLOCATION; COMMUNICATION; OPTIMIZATION; ALTITUDE; INTERNET;
D O I
10.1109/JIOT.2024.3367005
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the rapid development of wireless communication networks, UAVs serving as base stations are increasingly being applied in various scenarios which not only include edge computation and task offloading, but also involve emergency communication, vehicular network enhancement, etc. In order to enhance the utility of UAV base stations' allocation and deployment, a series of algorithms have been proposed, utilizing heuristic methods, learning-based algorithms, or optimization approaches. However, it is intractable for current algorithms to handle the exponential computation increment with UAV base stations increasing, and complicated application scenarios with high dynamic demands. To solve the above issues, we formulate a decision problem with a long sequence to optimize the deployment of multi-UAV base stations for maximizing vehicular networks' communication coverage ratio, which needs to be subject to co-constraints consisting of moving velocity, energy consumption, and communication coverage radius. To solve this optimization problem, we creatively propose an algorithm named dense multiagent reinforcement learning (DMARL), which is under the dual-layer nested decision-making framework, centralized training with decentralized deployment, and accelerates training by only collecting critical states into the dense sampling buffer. To prove our proposed algorithm's effectiveness and generalization ability, we conduct experimental simulations in scenarios with different scales. Corresponding results have been provided to verify our algorithm's superiority in training efficiency and performance metrics, including coverage ratio and energy consumption, compared with other algorithms.
引用
收藏
页码:21274 / 21286
页数:13
相关论文
共 50 条
  • [41] Deep reinforcement learning based trajectory design and resource allocation for task-aware multi-UAV enabled MEC networks
    Li, Zewu
    Xu, Chen
    Zhang, Zhanpeng
    Wu, Runze
    COMPUTER COMMUNICATIONS, 2024, 213 : 88 - 98
  • [42] Toward Autonomous Multi-UAV Wireless Network: A Survey of Reinforcement Learning-Based Approaches
    Bai, Yu
    Zhao, Hui
    Zhang, Xin
    Chang, Zheng
    Jantti, Riku
    Yang, Kun
    IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2023, 25 (04): : 3038 - 3067
  • [43] Three-Dimension Trajectory Design for Multi-UAV Wireless Network With Deep Reinforcement Learning
    Zhang, Wenqi
    Wang, Qiang
    Liu, Xiao
    Liu, Yuanwei
    Chen, Yue
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (01) : 600 - 612
  • [44] A deep reinforcement learning based distributed multi-UAV dynamic area coverage algorithm for complex environment
    Xiao, Jian
    Yuan, Guohui
    Xue, Yuxi
    He, Jinhui
    Wang, Yaoting
    Zou, Yuanjiang
    Wang, Zhuoran
    NEUROCOMPUTING, 2024, 595
  • [45] QoS-Guaranteed Multi-UAV Coverage Scheme for IoT Communications With Interference Management
    Chen, Ruirui
    Cheng, Wenchi
    Ding, Yu
    Wang, Bowen
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (03) : 4116 - 4126
  • [46] Multiagent Deep-Reinforcement-Learning-Based Resource Allocation for Heterogeneous QoS Guarantees for Vehicular Networks
    Tian, Jie
    Liu, Qianqian
    Zhang, Haixia
    Wu, Dalei
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (03): : 1683 - 1695
  • [47] 3D Multi-UAV Computing Networks: Computation Capacity and Energy Consumption Tradeoff
    Xu, Yu
    Zhang, Tiankui
    Liu, Yuanwei
    Yang, Dingcheng
    Xiao, Lin
    Tao, Meixia
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (07) : 10627 - 10641
  • [48] Multi-UAV Replacement and Trajectory Design for Coverage Continuity
    Gupta, Nishant
    Agarwal, Satyam
    Mishra, Deepak
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022,
  • [49] Multi-Agent Deep Reinforcement Learning-Empowered Channel Allocation in Vehicular Networks
    Kumar, Anitha Saravana
    Zhao, Lian
    Fernando, Xavier
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (02) : 1726 - 1736
  • [50] Deep Reinforcement Learning Based Energy Efficient Multi-UAV Data Collection for IoT Networks
    Khodaparast, Seyed Saeed
    Lu, Xiao
    Wang, Ping
    Uyen Trang Nguyen
    IEEE OPEN JOURNAL OF VEHICULAR TECHNOLOGY, 2021, 2 : 249 - 260