Generalized optimal transport and mean field control problems for reaction-diffusion systems with high-order finite element computation

被引:2
|
作者
Fu, Guosheng [1 ]
Osher, Stanley [2 ]
Pazner, Will [3 ]
Li, Wuchen [4 ]
机构
[1] Univ Notre Dame, Dept Appl & Computat Math & Stat, Notre Dame, IN USA
[2] Univ Calif Los Angeles, Dept Math, Los Angeles, CA USA
[3] Portland State Univ, Fariborz Maseeh Dept Math & Stat, Portland, OR USA
[4] Univ South Carolina, Dept Math, Columbia, SC 29208 USA
关键词
Optimal transport; Multi-population mean-field control problems; Generalized Fisher information functional; Reaction-diffusion systems; Finite element methods; ALG2; algorithms; DISTANCES; ENTROPY;
D O I
10.1016/j.jcp.2024.112994
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We design and compute a class of optimal control problems for reaction -diffusion systems. They form mean field control problems related to multi -density reaction -diffusion systems. To solve proposed optimal control problems numerically, we first apply high -order finite element methods to discretize the space-time domain and then solve the optimal control problem using augmented Lagrangian methods (ALG2). Numerical examples, including generalized optimal transport and mean field control problems between Gaussian distributions and image densities, demonstrate the effectiveness of the proposed modeling and computational methods for mean field control problems involving reaction -diffusion equations/systems.
引用
收藏
页数:28
相关论文
共 23 条
  • [1] Efficient computation of mean field control based barycenters from reaction-diffusion systems
    Vijaywargiya, Arjun
    Fu, Guosheng
    Osher, Stanley
    Li, Wuchen
    JOURNAL OF COMPUTATIONAL PHYSICS, 2025, 527
  • [2] High order computation of optimal transport, mean field planning, and potential mean field games
    Fu, Guosheng
    Liu, Siting
    Osher, Stanley
    Li, Wuchen
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 491
  • [3] Moving Finite Element Simulations for Reaction-Diffusion Systems
    Hu, Guanghui
    Qiao, Zhonghua
    Tang, Tao
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2012, 4 (03) : 365 - 381
  • [4] Optimal control of networked reaction-diffusion systems
    Gao, Shupeng
    Chang, Lili
    Romic, Ivan
    Wang, Zhen
    Jusup, Marko
    Holme, Petter
    JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2022, 19 (188)
  • [5] Automatic control problems for reaction-diffusion systems
    Cavaterra, C
    Colombo, F
    JOURNAL OF EVOLUTION EQUATIONS, 2002, 2 (02) : 241 - 273
  • [6] ERROR ESTIMATES IN BALANCED NORMS OF FINITE ELEMENT METHODS FOR HIGHER ORDER REACTION-DIFFUSION PROBLEMS
    Franz, Sebastian
    Roos, Hans-G
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2020, 17 (04) : 532 - 542
  • [7] Singularly Perturbed Reaction-Diffusion Problems as First order systems
    Franz, Sebastian
    JOURNAL OF SCIENTIFIC COMPUTING, 2021, 89 (02)
  • [8] Convergence of a splitting method of high order for reaction-diffusion systems
    Descombes, S
    MATHEMATICS OF COMPUTATION, 2001, 70 (236) : 1481 - 1501
  • [9] Finite-time synchronisation control of coupled reaction-diffusion systems
    Han, Xin-Xin
    Yu, Hai-Yan
    Wu, Kai-Ning
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2019, 50 (15) : 2838 - 2852
  • [10] Isogeometric analysis for singularly perturbed high-order, two-point boundary value problems of reaction-diffusion type
    Xenophontos, C.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 80 (11) : 2340 - 2350