A class of generalized symplectic graphs based on totally isotropic subspaces in symplectic spaces over finite fields

被引:0
作者
Huo, Lijun [1 ]
Cheng, Weidong [2 ]
机构
[1] Chongqing Univ Technol, Sch Sci, Chongqing 400054, Peoples R China
[2] Chongqing Univ Posts & Telecommun, Sch Sci, Chongqing 400065, Peoples R China
基金
中国国家自然科学基金;
关键词
Generalized symplectic graph; Symplectic space; Distance; d-Deza graph; Subconstituent; SUBCONSTITUENTS;
D O I
10.2298/FIL2410651H
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let F(q )be a finite field of order q and F-q((2 nu)) be a 2 nu-dimensional symplectic space. In the present paper, we study a class of generalized symplectic graphs Gamma based on m-dimensional totally isotropic subspaces in F-q((2 nu)). It is shown that Gamma is vertex -transitive, and it is a 5-Deza graph with diameter m + 1. Moreover, we determine the parameters concerning the first subconstituent Gamma(1) and it is shown that Gamma(1) is also a 5-Deza graph.
引用
收藏
页码:3651 / 3663
页数:13
相关论文
共 18 条
[1]  
BANNAI E, 1984, ALGEBRAIC COMBINATOR, V1
[2]  
Brouwer Andries E., 1989, Results in Mathematics and Related Areas (3), V18
[3]  
Cameron P J, 1982, Geom. Dedicata, V12, P75
[4]  
Godsil C., 2001, Algebraic Graph Theory, V207
[5]   Chromatic number and the 2-rank of a graph [J].
Godsil, CD ;
Royle, GF .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2001, 81 (01) :142-149
[6]   Subconstituents of symplectic graphs modulo pn [J].
Gu, Zhenhua .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (05) :1321-1329
[7]   Automorphisms of Subconstituents of Symplectic Graphs [J].
Gu, Zhenhua ;
Wan, Zhexian .
ALGEBRA COLLOQUIUM, 2013, 20 (02) :333-342
[8]   Subconstituents of symplectic graphs [J].
Li, Feng-gao ;
Wang, Yang-xian .
EUROPEAN JOURNAL OF COMBINATORICS, 2008, 29 (05) :1092-1103
[9]   Symplectic graphs modulo pq [J].
Li, Fenggao ;
Wang, Kaishun ;
Guo, Jun .
DISCRETE MATHEMATICS, 2013, 313 (05) :650-655
[10]   More on symplectic graphs modulo pn [J].
Li, Fenggao ;
Wang, Kaishun ;
Guo, Jun .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (06) :2651-2660