Detection of oral cancer and oral potentially malignant disorders using artificial intelligence-based image analysis

被引:1
|
作者
Kouketsu, Atsumu [1 ]
Doi, Chiaki [2 ]
Tanaka, Hiroaki [2 ]
Araki, Takashi [2 ]
Nakayama, Rina [2 ]
Toyooka, Tsuguyoshi [2 ]
Hiyama, Satoshi [2 ]
Iikubo, Masahiro [3 ]
Osaka, Ken [4 ]
Sasaki, Keiichi [5 ]
Nagai, Hirokazu [6 ]
Sugiura, Tsuyoshi [1 ]
Yamauchi, Kensuke [7 ]
Kuroda, Kanako [1 ,7 ]
Yanagisawa, Yuta [1 ,7 ]
Miyashita, Hitoshi [1 ,8 ]
Kajita, Tomonari [1 ]
Iwama, Ryosuke [1 ]
Kurobane, Tsuyoshi [1 ]
Takahashi, Tetsu [1 ,7 ]
机构
[1] Tohoku Univ, Grad Sch Dent, Dept Dis Management Dent, Div Oral & Maxillofacial Oncol & Surg Sci, 4-1 Seiryo Machi,Aoba Ku, Sendai, Miyagi 9808575, Japan
[2] NTT Docomo Inc, X Tech Dev Dept, Tokyo, Japan
[3] Tohoku Univ, Grad Sch Dent, Div Dent Informat & Radiol, Sendai, Japan
[4] Tohoku Univ, Grad Sch Dent, Dept Int & Community Oral Hlth, Sendai, Japan
[5] Tohoku Univ, Grad Sch Dent, Div Dent & Digital Forens, Sendai, Japan
[6] Sendai City Hosp, Dept Oral & Maxillofacial Surg, Sendai, Japan
[7] Tohoku Univ, Dept Dis Management Dent, Div Oral & Maxillofacial Reconstruct Surg, Grad Sch Dent, Sendai, Japan
[8] Tohoku Med & Pharmaceut Univ Hosp, Dept Oral & Maxillofacial Surg, Sendai, Japan
来源
HEAD AND NECK-JOURNAL FOR THE SCIENCES AND SPECIALTIES OF THE HEAD AND NECK | 2024年 / 46卷 / 09期
关键词
artificial intelligence; deep learning; oral cancer; oral squamous cell carcinoma;
D O I
10.1002/hed.27843
中图分类号
R76 [耳鼻咽喉科学];
学科分类号
100213 ;
摘要
Background: We aimed to construct an artificial intelligence-based model for detecting oral cancer and dysplastic leukoplakia using oral cavity images captured with a single-lens reflex camera. Subjects and methods: We used 1043 images of lesions from 424 patients with oral squamous cell carcinoma (OSCC), leukoplakia, and other oral mucosal diseases. An object detection model was constructed using a Single Shot Multibox Detector to detect oral diseases and their locations using images. The model was trained using 523 images of oral cancer, and its performance was evaluated using images of oral cancer (n = 66), leukoplakia (n = 49), and other oral diseases (n = 405). Results: For the detection of only OSCC versus OSCC and leukoplakia, the model demonstrated a sensitivity of 93.9% versus 83.7%, a negative predictive value of 98.8% versus 94.5%, and a specificity of 81.2% versus 81.2%. Conclusions: Our proposed model is a potential diagnostic tool for oral diseases.
引用
收藏
页码:2253 / 2260
页数:8
相关论文
共 50 条
  • [41] Advancements in diagnosing oral potentially malignant disorders: leveraging Vision transformers for multi-class detection
    Vinayahalingam, Shankeeth
    van Nistelrooij, Niels
    Rothweiler, Rene
    Tel, Alessandro
    Verhoeven, Tim
    Troeltzsch, Daniel
    Kesting, Marco
    Berge, Stefaan
    Xi, Tong
    Heiland, Max
    Fluegge, Tabea
    CLINICAL ORAL INVESTIGATIONS, 2024, 28 (07)
  • [42] Cell Nucleus Detection in Oral Cytology Using Artificial Intelligence
    Shimomoto, Yoichi
    Inoue, Kirin
    Yamamoto, Ikuo
    Ohba, Seigo
    Ogata, Kinuko
    Yamamoto, Hideyuki
    SENSORS AND MATERIALS, 2023, 35 (02) : 399 - 409
  • [43] Artificial-Intelligence-Based Decision Making for Oral Potentially Malignant Disorder Diagnosis in Internet of Medical Things Environment
    Alabdan, Rana
    Alruban, Abdulrahman
    Hilal, Anwer Mustafa
    Motwakel, Abdelwahed
    HEALTHCARE, 2023, 11 (01)
  • [44] Role of Advanced Diagnostic Aids in the Detection of Potentially Malignant Disorders and Oral Cancer at an Early Stage
    Abdul, Nishath Sayed
    CUREUS JOURNAL OF MEDICAL SCIENCE, 2023, 15 (01)
  • [45] Diagnostic efficacy of neutrophil to lymphocyte ratio (NLR) in oral potentially malignant disorders and oral cancer
    Singh, Shruti
    Singh, Jaya
    Ganguly, Roop
    Chandra, Shaleen
    Samadi, Fahad M.
    Suhail, Shaista
    INDIAN JOURNAL OF PATHOLOGY AND MICROBIOLOGY, 2021, 64 (02) : 243 - 249
  • [46] Molecular diagnostics in oral cancer and oral potentially malignant disorders-A clinician's guide
    Yap, Tami
    Celentano, Antonio
    Seers, Christine
    McCullough, Michael J.
    Farah, Camile S.
    JOURNAL OF ORAL PATHOLOGY & MEDICINE, 2020, 49 (01) : 1 - 8
  • [47] Estimating the burden of care for oral potentially malignant disorders and oral cancer in Brazilian dental practice
    de Paiva, Joao Paulo Goncalves
    Jorge, Jacks
    dos Santos, Erison Santana
    Migowski, Arn
    Cohen-Goldemberg, Daniel
    Kowalski, Luiz Paulo
    Brandao, Thais Bianca
    Ribeiro, Ana Carolina Prado
    Lopes, Marcio Ajudarte
    Vargas, Pablo Agustin
    da Silva, Euripides Alves
    Warnakulasuriya, Saman
    Santos-Silva, Alan Roger
    MEDICINA ORAL PATOLOGIA ORAL Y CIRUGIA BUCAL, 2024, 29 (05): : e719 - e726
  • [48] Deep learning-based electrical impedance spectroscopy analysis for malignant and potentially malignant oral disorder detection
    Zhicheng Lin
    Zi-Qiang Lang
    Lingzhong Guo
    Dawn C Walker
    Malwina Matella
    Mengxiao Wang
    Craig Murdoch
    Scientific Reports, 15 (1)
  • [49] Possible association of periodontal disease with oral cancer and oral potentially malignant disorders: a systematic review
    Colonia-Garcia, Adriana
    Gutierrez-Velez, Mariana
    Duque-Duque, Andres
    de Andrade, Cleverton Roberto
    ACTA ODONTOLOGICA SCANDINAVICA, 2020, 78 (07) : 553 - 559
  • [50] Effectiveness of adjunctive screening tools for potentially malignant oral disorders and oral cancer: A systematic review
    Alotaibi, Khalid Zabin
    Kolarkodi, Shaul Hameed
    SAUDI DENTAL JOURNAL, 2024, 36 (01) : 28 - 37