Detection of oral cancer and oral potentially malignant disorders using artificial intelligence-based image analysis

被引:1
|
作者
Kouketsu, Atsumu [1 ]
Doi, Chiaki [2 ]
Tanaka, Hiroaki [2 ]
Araki, Takashi [2 ]
Nakayama, Rina [2 ]
Toyooka, Tsuguyoshi [2 ]
Hiyama, Satoshi [2 ]
Iikubo, Masahiro [3 ]
Osaka, Ken [4 ]
Sasaki, Keiichi [5 ]
Nagai, Hirokazu [6 ]
Sugiura, Tsuyoshi [1 ]
Yamauchi, Kensuke [7 ]
Kuroda, Kanako [1 ,7 ]
Yanagisawa, Yuta [1 ,7 ]
Miyashita, Hitoshi [1 ,8 ]
Kajita, Tomonari [1 ]
Iwama, Ryosuke [1 ]
Kurobane, Tsuyoshi [1 ]
Takahashi, Tetsu [1 ,7 ]
机构
[1] Tohoku Univ, Grad Sch Dent, Dept Dis Management Dent, Div Oral & Maxillofacial Oncol & Surg Sci, 4-1 Seiryo Machi,Aoba Ku, Sendai, Miyagi 9808575, Japan
[2] NTT Docomo Inc, X Tech Dev Dept, Tokyo, Japan
[3] Tohoku Univ, Grad Sch Dent, Div Dent Informat & Radiol, Sendai, Japan
[4] Tohoku Univ, Grad Sch Dent, Dept Int & Community Oral Hlth, Sendai, Japan
[5] Tohoku Univ, Grad Sch Dent, Div Dent & Digital Forens, Sendai, Japan
[6] Sendai City Hosp, Dept Oral & Maxillofacial Surg, Sendai, Japan
[7] Tohoku Univ, Dept Dis Management Dent, Div Oral & Maxillofacial Reconstruct Surg, Grad Sch Dent, Sendai, Japan
[8] Tohoku Med & Pharmaceut Univ Hosp, Dept Oral & Maxillofacial Surg, Sendai, Japan
来源
HEAD AND NECK-JOURNAL FOR THE SCIENCES AND SPECIALTIES OF THE HEAD AND NECK | 2024年 / 46卷 / 09期
关键词
artificial intelligence; deep learning; oral cancer; oral squamous cell carcinoma;
D O I
10.1002/hed.27843
中图分类号
R76 [耳鼻咽喉科学];
学科分类号
100213 ;
摘要
Background: We aimed to construct an artificial intelligence-based model for detecting oral cancer and dysplastic leukoplakia using oral cavity images captured with a single-lens reflex camera. Subjects and methods: We used 1043 images of lesions from 424 patients with oral squamous cell carcinoma (OSCC), leukoplakia, and other oral mucosal diseases. An object detection model was constructed using a Single Shot Multibox Detector to detect oral diseases and their locations using images. The model was trained using 523 images of oral cancer, and its performance was evaluated using images of oral cancer (n = 66), leukoplakia (n = 49), and other oral diseases (n = 405). Results: For the detection of only OSCC versus OSCC and leukoplakia, the model demonstrated a sensitivity of 93.9% versus 83.7%, a negative predictive value of 98.8% versus 94.5%, and a specificity of 81.2% versus 81.2%. Conclusions: Our proposed model is a potential diagnostic tool for oral diseases.
引用
收藏
页码:2253 / 2260
页数:8
相关论文
共 50 条
  • [31] Application of image enhancement in the auxiliary diagnosis of oral potentially malignant disorders
    Jiaqi Wang
    Jiawang Liu
    Yao Liu
    Feiran Lin
    Sen Yang
    Xiaobing Guan
    Clinical Oral Investigations, 29 (5)
  • [32] Therapeutic Role of Phytochemicals in the Prevention of Oral Potentially Malignant Disorders and Oral Cancer - A Review
    Nagi, Ravleen
    Rakesh, N.
    Reddy, Sujatha S.
    Konidena, Aravinda
    Makkad, Ramanpal Singh
    Vyas, Tarun
    JOURNAL OF EVOLUTION OF MEDICAL AND DENTAL SCIENCES-JEMDS, 2021, 10 (16): : 1156 - 1165
  • [33] Serum and salivary sialic acid as a biomarker in oral potentially malignant disorders and oral cancer
    Dadhich, M.
    Prabhu, V
    Pai, V. R.
    D'Souza, J.
    Harish, S.
    Jose, M.
    INDIAN JOURNAL OF CANCER, 2014, 51 (03) : 214 - 218
  • [34] Salivary L-fucose as a biomarker for oral potentially malignant disorders and oral cancer
    Sharma, Mudita
    Sharma, Eklavya
    Prabhu, Vishnudas
    Pai, Vinitha Ramanath
    D'souza, Jyothi
    Harish, Sindhu
    Jose, Maji
    JOURNAL OF CANCER RESEARCH AND THERAPEUTICS, 2020, 16 (03) : 546 - 550
  • [35] The detection of oral cancer and potentially malignant disorders in Ireland: An observational study of 100 cases
    Ahern, John
    Toner, Mary
    Van Harten, Maria
    Nunn, June
    JOURNAL OF PUBLIC HEALTH DENTISTRY, 2020, 80 (04) : 333 - 337
  • [36] A comprehensive dataset of annotated oral cavity images for diagnosis of oral cancer and oral potentially malignant disorders
    Piyarathne, N. S.
    Liyanage, S. N.
    Rasnayaka, R. M. S. G. K.
    Hettiarachchi, P. V. K. S.
    Devindi, G. A. I.
    Francis, F. B. A. H.
    Dissanayake, D. M. D. R.
    Ranasinghe, R. A. N. S.
    Pavithya, M. B. D.
    Nawinne, I. B.
    Ragel, R. G.
    Jayasinghe, R. D.
    ORAL ONCOLOGY, 2024, 156
  • [37] Oral cancer and oral potentially malignant disorders in patients with Fanconi anemia - A systematic review
    Santana, Nayara Conceicao Marcos
    Sena, Ana Carolina Velasco Ponde de
    Rocha, Paula Alves da Silva
    Arrudac, Jose Alcides Almeida de
    -Pereira, Cassius Carvalho Torres
    Abreu, Lucas Guimaraes
    Fournier, Benjamin P. J.
    Warnakulasuriya, Saman
    Silva, Tarcilia Aparecida
    ORAL ONCOLOGY, 2024, 150
  • [38] Effectiveness of screening for oral cancer and oral potentially malignant disorders (OPMD): A systematic review
    Parak, Uzayr
    Carvalho, Andre Lopes
    Roitberg, Felipe
    Mandrik, Olena
    PREVENTIVE MEDICINE REPORTS, 2022, 30
  • [39] Salivary metabolomics in oral potentially malignant disorders and oral cancer patients—a systematic review with meta-analysis
    Nur Syahirah Binti Mohd Nazar
    Anand Ramanathan
    Wan Maria Nabillah Ghani
    Faezah Binti Rokhani
    Pulikkotil Shaju Jacob
    Nurul Elma Binti Sabri
    Mohd Sukri Hassan
    Kathreena Kadir
    Lalli Dharmarajan
    Clinical Oral Investigations, 28
  • [40] High referral accuracy for oral cancers and oral potentially malignant disorders using telemedicine
    Haron, Nabihah
    Rajendran, Senthilmani
    Kallarakkal, Thomas George
    Zain, Rosnah Binti
    Ramanathan, Anand
    Abraham, Mannil Thomas
    Lau, Shin Hin
    Cheng, Lai Choo
    Chong, Sherrie Mei Yee
    Mohamed Azahar, Farah Aliya
    Mohamad Zaini, Zuraiza
    Chan, Siew Wui
    Goh, Yet Ching
    Lim, Daniel
    Khairi, Juliana
    Abidin, Marzuki Zainal
    Abdul Rahman, Zainal Ariff
    Liew, Chee Sun
    Fong, Siew Chinn
    Yang, Yi-Hsin
    Ismail, Siti Mazlipah
    Cheong, Sok Ching
    ORAL DISEASES, 2023, 29 (02) : 380 - 389