Detection of oral cancer and oral potentially malignant disorders using artificial intelligence-based image analysis

被引:1
|
作者
Kouketsu, Atsumu [1 ]
Doi, Chiaki [2 ]
Tanaka, Hiroaki [2 ]
Araki, Takashi [2 ]
Nakayama, Rina [2 ]
Toyooka, Tsuguyoshi [2 ]
Hiyama, Satoshi [2 ]
Iikubo, Masahiro [3 ]
Osaka, Ken [4 ]
Sasaki, Keiichi [5 ]
Nagai, Hirokazu [6 ]
Sugiura, Tsuyoshi [1 ]
Yamauchi, Kensuke [7 ]
Kuroda, Kanako [1 ,7 ]
Yanagisawa, Yuta [1 ,7 ]
Miyashita, Hitoshi [1 ,8 ]
Kajita, Tomonari [1 ]
Iwama, Ryosuke [1 ]
Kurobane, Tsuyoshi [1 ]
Takahashi, Tetsu [1 ,7 ]
机构
[1] Tohoku Univ, Grad Sch Dent, Dept Dis Management Dent, Div Oral & Maxillofacial Oncol & Surg Sci, 4-1 Seiryo Machi,Aoba Ku, Sendai, Miyagi 9808575, Japan
[2] NTT Docomo Inc, X Tech Dev Dept, Tokyo, Japan
[3] Tohoku Univ, Grad Sch Dent, Div Dent Informat & Radiol, Sendai, Japan
[4] Tohoku Univ, Grad Sch Dent, Dept Int & Community Oral Hlth, Sendai, Japan
[5] Tohoku Univ, Grad Sch Dent, Div Dent & Digital Forens, Sendai, Japan
[6] Sendai City Hosp, Dept Oral & Maxillofacial Surg, Sendai, Japan
[7] Tohoku Univ, Dept Dis Management Dent, Div Oral & Maxillofacial Reconstruct Surg, Grad Sch Dent, Sendai, Japan
[8] Tohoku Med & Pharmaceut Univ Hosp, Dept Oral & Maxillofacial Surg, Sendai, Japan
来源
HEAD AND NECK-JOURNAL FOR THE SCIENCES AND SPECIALTIES OF THE HEAD AND NECK | 2024年 / 46卷 / 09期
关键词
artificial intelligence; deep learning; oral cancer; oral squamous cell carcinoma;
D O I
10.1002/hed.27843
中图分类号
R76 [耳鼻咽喉科学];
学科分类号
100213 ;
摘要
Background: We aimed to construct an artificial intelligence-based model for detecting oral cancer and dysplastic leukoplakia using oral cavity images captured with a single-lens reflex camera. Subjects and methods: We used 1043 images of lesions from 424 patients with oral squamous cell carcinoma (OSCC), leukoplakia, and other oral mucosal diseases. An object detection model was constructed using a Single Shot Multibox Detector to detect oral diseases and their locations using images. The model was trained using 523 images of oral cancer, and its performance was evaluated using images of oral cancer (n = 66), leukoplakia (n = 49), and other oral diseases (n = 405). Results: For the detection of only OSCC versus OSCC and leukoplakia, the model demonstrated a sensitivity of 93.9% versus 83.7%, a negative predictive value of 98.8% versus 94.5%, and a specificity of 81.2% versus 81.2%. Conclusions: Our proposed model is a potential diagnostic tool for oral diseases.
引用
收藏
页码:2253 / 2260
页数:8
相关论文
共 50 条
  • [21] Crystallization test: A prognostic biomarker in oral potentially malignant disorders and oral cancer
    Joshi, Kinjal
    Shah, Jigna
    INDIAN JOURNAL OF PATHOLOGY AND MICROBIOLOGY, 2024, 67 (04) : 829 - 834
  • [22] Ferritin Levels in Serum and Saliva of Oral Cancer and Oral Potentially Malignant Disorders
    Buch, Sajad Ahmad
    Babu, Subhas G.
    Castelino, Renita Lorina
    Pillai, Devika S.
    Bhat, Supriya
    Devi, Ullal Harshini
    EUROPEAN JOURNAL OF THERAPEUTICS, 2022, 28 (02): : 109 - 114
  • [23] Prevalence of oral cancer, oral potentially malignant disorders and other oral mucosal lesions in Cambodia
    Chher, Tepirou
    Hak, Sithan
    Kallarakkal, Thomas George
    Durward, Callum
    Ramanathan, Anand
    Ghani, Wan Maria Nabillah
    Razak, Ishak Abdul
    Harun, Masitah Hayati
    Ashar, Nor Atika Md
    Rajandram, Rama Krsna
    Prak, Pisethraingsey
    Hussaini, Haizal Mohd
    Zain, Rosnah Binti
    ETHNICITY & HEALTH, 2018, 23 (01) : 1 - 15
  • [24] Artificial Intelligence for Image Analysis in Oral Squamous Cell Carcinoma: A Review
    Pereira-Prado, Vanesa
    Martins-Silveira, Felipe
    Sicco, Estafania
    Hochmann, Jimena
    Isiordia-Espinoza, Mario Alberto
    Gonzalez, Rogelio Gonzalez
    Pandiar, Deepak
    Bologna-Molina, Ronell
    DIAGNOSTICS, 2023, 13 (14)
  • [25] Relationship between chronic trauma of the oral mucosa, oral potentially malignant disorders and oral cancer
    David Piemonte, Eduardo
    Pablo Lazos, Jeronimo
    Brunotto, Mabel
    JOURNAL OF ORAL PATHOLOGY & MEDICINE, 2010, 39 (07) : 513 - 517
  • [26] Artificial intelligence-based detection of pharyngeal cancer using convolutional neural networks
    Tamashiro, Atsuko
    Yoshio, Toshiyuki
    Ishiyama, Akiyoshi
    Tsuchida, Tomohiro
    Hijikata, Kazunori
    Yoshimizu, Shoichi
    Horiuchi, Yusuke
    Hirasawa, Toshiaki
    Seto, Akira
    Sasaki, Toru
    Fujisaki, Junko
    Tada, Tomohiro
    DIGESTIVE ENDOSCOPY, 2020, 32 (07) : 1057 - 1065
  • [27] POTENTIALLY MALIGNANT DISORDERS OF ORAL CAVITY
    George, Antony
    Sreenivasan, B. S.
    Sunil, S.
    Varghese, Soma Susan
    Thomas, Jubin
    Gopakumar, Devi
    Mani, Varghese
    ORAL & MAXILLOFACIAL PATHOLOGY JOURNAL, 2011, 2 (01) : 95 - 100
  • [28] The onset and progression of oral potentially malignant disorders in Fanconi anemia patients: Highlighting early detection of oral cancer
    Long, Yuanyuan
    Li, Chenxi
    Zhang, Xiaochen
    Ren, Zhenhu
    Liu, Wei
    JOURNAL OF DENTAL SCIENCES, 2024, 19 (01) : 620 - 625
  • [29] Liquid saliva analysis using optofluidic photonic crystal fiber for detection of oral potentially malignant disorders
    Maryam, Siddra
    Benazza, Amine
    Fahy, Edward
    Sekar, Sanathana Konugolu Venkta
    Dinish, U. S.
    Olivo, Malini
    Ni Riordain, Richeal
    Andersson-Engels, Stefan
    Humbert, Georges
    Komolibus, Katarzyna
    Gautam, Rekha
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2025, 332
  • [30] The role of hypoxia in oral cancer and potentially malignant disorders: a review
    Kujan, Omar
    Shearston, Kate
    Farah, Camile S.
    JOURNAL OF ORAL PATHOLOGY & MEDICINE, 2017, 46 (04) : 246 - 252