Hybrid Ensemble Deep Learning Model for Advancing Ischemic Brain Stroke Detection and Classification in Clinical Application

被引:1
作者
Qasrawi, Radwan [1 ,2 ]
Qdaih, Ibrahem [3 ]
Daraghmeh, Omar [3 ]
Thwib, Suliman [1 ]
Polo, Stephanny Vicuna [4 ]
Atari, Siham [1 ]
Abu Al-Halawa, Diala [5 ]
机构
[1] Al Quds Univ, Dept Comp Sci, POB 89, Jerusalem 20002, Palestine
[2] Istinye Univ, Dept Comp Engn, TR-34010 Istanbul, Turkiye
[3] Al Quds Univ, Dept Med Imaging, POB 20002, Jerusalem, Palestine
[4] Al Quds Univ, Al Quds Business Ctr Innovat Technol & Entrepreneu, POB 20002, Jerusalem, Palestine
[5] Al Quds Univ, Fac Med, POB 20002, Jerusalem, Palestine
关键词
brain stroke; clinical application; deep learning; hybrid model; image enhancement; images; HEMORRHAGIC STROKE; GLOBAL BURDEN; ENHANCEMENT; IMAGES;
D O I
10.3390/jimaging10070160
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
Ischemic brain strokes are severe medical conditions that occur due to blockages in the brain's blood flow, often caused by blood clots or artery blockages. Early detection is crucial for effective treatment. This study aims to improve the detection and classification of ischemic brain strokes in clinical settings by introducing a new approach that integrates the stroke precision enhancement, ensemble deep learning, and intelligent lesion detection and segmentation models. The proposed hybrid model was trained and tested using a dataset of 10,000 computed tomography scans. A 25-fold cross-validation technique was employed, while the model's performance was evaluated using accuracy, precision, recall, and F1 score. The findings indicate significant improvements in accuracy for different stages of stroke images when enhanced using the SPEM model with contrast-limited adaptive histogram equalization set to 4. Specifically, accuracy showed significant improvement (from 0.876 to 0.933) for hyper-acute stroke images; from 0.881 to 0.948 for acute stroke images, from 0.927 to 0.974 for sub-acute stroke images, and from 0.928 to 0.982 for chronic stroke images. Thus, the study shows significant promise for the detection and classification of ischemic brain strokes. Further research is needed to validate its performance on larger datasets and enhance its integration into clinical settings.
引用
收藏
页数:15
相关论文
共 32 条
  • [1] Deep Learning and Machine Learning for Early Detection of Stroke and Haemorrhage
    Al-Mekhlafi, Zeyad Ghaleb
    Senan, Ebrahim Mohammed
    Rassem, Taha H.
    Mohammed, Badiea Abdulkarem
    Makbol, Nasrin M.
    Alanazi, Adwan Alownie
    Almurayziq, Tariq S.
    Ghaleb, Fuad A.
    [J]. CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 72 (01): : 775 - 796
  • [2] Hemorrhagic and Ischemic Strokes Compared Stroke Severity, Mortality, and Risk Factors
    Andersen, Klaus Kaae
    Olsen, Tom Skyhoj
    Dehlendorff, Christian
    Kammersgaard, Lars Peter
    [J]. STROKE, 2009, 40 (06) : 2068 - 2072
  • [3] Chen Ruiquan, 2023, Proceedings of SPIE, DOI 10.1117/12.2652045
  • [4] Post-stroke complications: mechanisms, diagnosis, and therapies
    Chen, Wenqiang
    Huang, Yinong
    Chong, Cheong-Meng
    Zheng, Haiqing
    [J]. FRONTIERS IN NEUROLOGY, 2023, 14
  • [5] Deep Learning-Based Brain Computed Tomography Image Classification with Hyperparameter Optimization through Transfer Learning for Stroke
    Chen, Yung-Ting
    Chen, Yao-Liang
    Chen, Yi-Yun
    Huang, Yu-Ting
    Wong, Ho-Fai
    Yan, Jiun-Lin
    Wang, Jiun-Jie
    [J]. DIAGNOSTICS, 2022, 12 (04)
  • [6] Dhiman H., 2022, P 2022 10 INT C REL, P1, DOI [10.1109/ICRITO56286.2022.9965122, DOI 10.1109/ICRITO56286.2022.9965122]
  • [7] A Hybrid Stacked CNN and Residual Feedback GMDH-LSTM Deep Learning Model for Stroke Prediction Applied on Mobile AI Smart Hospital Platform
    Elbagoury, Bassant M.
    Vladareanu, Luige
    Vladareanu, Victor
    Salem, Abdel Badeeh
    Travediu, Ana-Maria
    Roushdy, Mohamed Ismail
    [J]. SENSORS, 2023, 23 (07)
  • [8] Global Burden, Risk Factor Analysis, and Prediction Study of Ischemic Stroke, 1990-2030
    Fan, Jiahui
    Li, Xiaoguang
    Yu, Xueying
    Liu, Zhenqiu
    Jiang, Yanfeng
    Fang, Yibin
    Zong, Ming
    Suo, Chen
    Man, Qiuhong
    Xiong, Lize
    [J]. NEUROLOGY, 2023, 101 (02) : E137 - E150
  • [9] Update on the Global Burden of Ischemic and Hemorrhagic Stroke in 1990-2013: The GBD 2013 Study
    Feigin, Valery L.
    Krishnamurthi, Rita V.
    Parmar, Priya
    Norrving, Bo
    Mensah, George A.
    Bennett, Derrick A.
    Barker-Collo, Suzanne
    Moran, Andrew E.
    Sacco, Ralph L.
    Truelsen, Thomas
    Davis, Stephen
    Pandian, Jeyaraj Durai
    Naghavi, Mohsen
    Forouzanfar, Mohammad H.
    Nguyen, Grant
    Johnson, Catherine O.
    Vos, Theo
    Meretoja, Atte
    Murray, Christopher J. L.
    Roth, Gregory A.
    Abd-Allah, Foad
    Abera, Semaw Ferede
    Akinyemi, Rufus Olusola
    Salman, Rustam Al-Shahi
    Anderson, Craig S.
    Bahit, Maria Cecilia
    Banerjee, Amitava
    Basu, Sanjay
    Beauchamp, Norman J.
    Bornstein, Natan M.
    Brainin, Michael
    Cabral, Norberto Luiz
    Campos-Nonato, Ismael
    Caso, Valeria
    Catala-Lopez, Ferrán
    Chowdhury, Rajiv
    Christensen, Hanne K.
    Connor, Myles D.
    deVeber, Gabrielle
    Dharmaratne, Samath D.
    Dokova, Klara
    Donnan, Geoffrey
    Endres, Matthias
    Fernandes, Jefferson Gomes
    Gankpe, Fortune
    Geleijnse, Johanna M.
    Gillium, Richard F.
    Giroud, Maurice
    Hamadeh, Randah R.
    Hankey, Graeme J.
    [J]. NEUROEPIDEMIOLOGY, 2015, 45 (03) : 161 - 176
  • [10] Gaidhani BR, 2019, 2019 2ND INTERNATIONAL CONFERENCE ON INTELLIGENT COMMUNICATION AND COMPUTATIONAL TECHNIQUES (ICCT), P242, DOI [10.1109/ICCT46177.2019.8969052, 10.1109/icct46177.2019.8969052]