A parameter uniform numerical method on a Bakhvalov type mesh for singularly perturbed degenerate parabolic convection-diffusion problems

被引:0
作者
Kumar, Shashikant [1 ]
Kumar, Sunil [2 ]
Ramos, Higinio [3 ,4 ]
Kuldeep
机构
[1] Indian Inst Technol Delhi, Dept Math, New Delhi, India
[2] Indian Inst Technol BHU, Dept Math Sci, Varanasi, Uttar Pradesh, India
[3] Univ Salamanca, Sci Comp Grp, Plaza De La Merced, Salamanca 37008, Spain
[4] Escuela Politecn Super De Zamora, Campus Viriato, Zamora 49022, Spain
关键词
Singular perturbation; Upwind scheme; Bakhvalov mesh; Degenerate parabolic problem; Uniform convergence; FINITE-DIFFERENCE METHOD; SCHEME; CONVERGENCE; RESPECT;
D O I
10.1007/s12190-024-02178-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are focused on the numerical treatment of a singularly perturbed degenerate parabolic convection-diffusion problem that exhibits a parabolic boundary layer. The discretization and analysis of the problem are done in two steps. In the first step, we discretize in time and prove its uniform convergence using an auxiliary problem. In the second step, we discretize in space using an upwind scheme on a Bakhvalov-type mesh and prove its uniform convergence using the truncation error and barrier function approach, wherein several bounds derived for the mesh step sizes are used. Numerical results for a couple of examples are presented to support the theoretical bounds derived in the paper.
引用
收藏
页码:5645 / 5668
页数:24
相关论文
共 50 条
[41]   An efficient numerical approach for singularly perturbed parabolic convection-diffusion problems with large time-lag [J].
Negero, Naol Tufa ;
Duressa, Gemechis File .
JOURNAL OF MATHEMATICAL MODELING, 2022, 10 (02) :173-190
[42]   Implementing Reproducing Kernel Method to Solve Singularly Perturbed Convection-Diffusion Parabolic Problems [J].
Abbasbandy, Saeid ;
Sahihi, Hussein ;
Allahviranloo, Tofigh .
MATHEMATICAL MODELLING AND ANALYSIS, 2021, 26 (01) :116-134
[43]   The parameter uniform numerical method for singularly perturbed parabolic reaction-diffusion problems on equidistributed grids [J].
Gowrisankar, S. ;
Natesan, Srinivasan .
APPLIED MATHEMATICS LETTERS, 2013, 26 (11) :1053-1060
[44]   High-order finite element method on a Bakhvalov-type mesh for a singularly perturbed convection-diffusion problem with two parameters [J].
Zhang, Jin ;
Lv, Yanhui .
APPLIED MATHEMATICS AND COMPUTATION, 2021, 397
[45]   Supercloseness of linear streamline diffusion finite element method on Bakhvalov-type mesh for singularly perturbed convection-diffusion equation in 1D [J].
Liu, Xiaowei ;
Zhang, Jin .
APPLIED MATHEMATICS AND COMPUTATION, 2022, 430
[46]   Numerical method for a singularly perturbed convection-diffusion problem with delay [J].
Amiraliyev, Gabil M. ;
Cimen, Erkan .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (08) :2351-2359
[47]   ANALYSIS OF A DG METHOD FOR SINGULARLY PERTURBED CONVECTION-DIFFUSION PROBLEMS [J].
Lin, Runchang ;
Ye, Xiu ;
Zhang, Shangyou ;
Zhu, Peng .
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2020, 10 (03) :830-841
[48]   Analysis of a Hybrid Numerical Scheme for Singularly Perturbed Convection-Diffusion Type Delay Problems [J].
Sharma, Amit ;
Rai, Pratima .
INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2023, 20 (01)
[49]   A defect-correction parameter-uniform numerical method for a singularly perturbed convection-diffusion problem in one dimension [J].
Gracia, JL ;
O'Riordan, E .
NUMERICAL ALGORITHMS, 2006, 41 (04) :359-385
[50]   Robust computational method for singularly perturbed system of parabolic convection-diffusion problems with interior layers [J].
Natesan, Srinivasan ;
Singh, Maneesh K. .
COMPUTATIONAL AND MATHEMATICAL METHODS, 2021, 3 (06)