A parameter uniform numerical method on a Bakhvalov type mesh for singularly perturbed degenerate parabolic convection-diffusion problems

被引:0
作者
Kumar, Shashikant [1 ]
Kumar, Sunil [2 ]
Ramos, Higinio [3 ,4 ]
Kuldeep
机构
[1] Indian Inst Technol Delhi, Dept Math, New Delhi, India
[2] Indian Inst Technol BHU, Dept Math Sci, Varanasi, Uttar Pradesh, India
[3] Univ Salamanca, Sci Comp Grp, Plaza De La Merced, Salamanca 37008, Spain
[4] Escuela Politecn Super De Zamora, Campus Viriato, Zamora 49022, Spain
关键词
Singular perturbation; Upwind scheme; Bakhvalov mesh; Degenerate parabolic problem; Uniform convergence; FINITE-DIFFERENCE METHOD; SCHEME; CONVERGENCE; RESPECT;
D O I
10.1007/s12190-024-02178-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are focused on the numerical treatment of a singularly perturbed degenerate parabolic convection-diffusion problem that exhibits a parabolic boundary layer. The discretization and analysis of the problem are done in two steps. In the first step, we discretize in time and prove its uniform convergence using an auxiliary problem. In the second step, we discretize in space using an upwind scheme on a Bakhvalov-type mesh and prove its uniform convergence using the truncation error and barrier function approach, wherein several bounds derived for the mesh step sizes are used. Numerical results for a couple of examples are presented to support the theoretical bounds derived in the paper.
引用
收藏
页码:5645 / 5668
页数:24
相关论文
共 50 条
[31]   Robust Finite Difference Method for Singularly Perturbed Two-Parameter Parabolic Convection-Diffusion Problems [J].
Bullo, Tesfaye Aga ;
Duressa, Gemechis File ;
Degla, Guy Aymard .
INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2021, 18 (02)
[32]   Uniform convergence of a weak Galerkin method for singularly perturbed convection-diffusion problems? [J].
Zhang, Jin ;
Liu, Xiaowei .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2022, 200 :393-403
[33]   Uniform convergence of finite element method on Bakhvalov-type mesh for a 2-D singularly perturbed convection-diffusion problem with exponential layers [J].
Zhang, Jin ;
Zhang, Chunxiao .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2025, 228 :39-51
[34]   Numerical Study of a Singularly Perturbed Two Parameter Problems on a Modified Bakhvalov Mesh [J].
Chakravarthy, P. Pramod ;
Shivhare, Meenakshi .
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2020, 60 (11) :1778-1786
[35]   Numerical Study of a Singularly Perturbed Two Parameter Problems on a Modified Bakhvalov Mesh [J].
P. Pramod Chakravarthy ;
Meenakshi Shivhare .
Computational Mathematics and Mathematical Physics, 2020, 60 :1778-1786
[36]   A Uniformly Convergent Numerical Algorithm on Harmonic (H(l)) Mesh for Parabolic Singularly Perturbed Convection-Diffusion Problems with Boundary Layer [J].
Babu, Gajendra ;
Prithvi, M. ;
Sharma, Kapil K. ;
Ramesh, V. P. .
DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS, 2024, 32 (02) :551-564
[37]   Uniformly Convergent Numerical Method for Two-parametric Singularly Perturbed Parabolic Convection-diffusion Problems [J].
Mekonnen, Tariku Birabasa ;
Duressa, Gemechis File .
JOURNAL OF APPLIED AND COMPUTATIONAL MECHANICS, 2021, 7 (02) :535-545
[38]   The supercloseness of the finite element method for a singularly perturbed convection-diffusion problem on a Bakhvalov-type mesh in 2D [J].
Zhang, Chunxiao ;
Zhang, Jin .
ACTA MATHEMATICA SCIENTIA, 2024, 44 (4) :1572-1593
[39]   High-order finite element method on a Vulanovi?-Bakhvalov mesh for a singularly perturbed convection-diffusion problem [J].
Liu, Li -Bin ;
Xu, Lei ;
Zhang, Yong .
APPLIED MATHEMATICS LETTERS, 2023, 136
[40]   Efficient parameter-robust numerical methods for singularly perturbed semilinear parabolic PDEs of convection-diffusion type [J].
Yadav, Narendra Singh ;
Mukherjee, Kaushik .
NUMERICAL ALGORITHMS, 2024, 96 (02) :925-973