A parameter uniform numerical method on a Bakhvalov type mesh for singularly perturbed degenerate parabolic convection-diffusion problems

被引:0
作者
Kumar, Shashikant [1 ]
Kumar, Sunil [2 ]
Ramos, Higinio [3 ,4 ]
Kuldeep
机构
[1] Indian Inst Technol Delhi, Dept Math, New Delhi, India
[2] Indian Inst Technol BHU, Dept Math Sci, Varanasi, Uttar Pradesh, India
[3] Univ Salamanca, Sci Comp Grp, Plaza De La Merced, Salamanca 37008, Spain
[4] Escuela Politecn Super De Zamora, Campus Viriato, Zamora 49022, Spain
关键词
Singular perturbation; Upwind scheme; Bakhvalov mesh; Degenerate parabolic problem; Uniform convergence; FINITE-DIFFERENCE METHOD; SCHEME; CONVERGENCE; RESPECT;
D O I
10.1007/s12190-024-02178-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are focused on the numerical treatment of a singularly perturbed degenerate parabolic convection-diffusion problem that exhibits a parabolic boundary layer. The discretization and analysis of the problem are done in two steps. In the first step, we discretize in time and prove its uniform convergence using an auxiliary problem. In the second step, we discretize in space using an upwind scheme on a Bakhvalov-type mesh and prove its uniform convergence using the truncation error and barrier function approach, wherein several bounds derived for the mesh step sizes are used. Numerical results for a couple of examples are presented to support the theoretical bounds derived in the paper.
引用
收藏
页码:5645 / 5668
页数:24
相关论文
共 50 条
[21]   An efficient finite difference method for coupled systems of singularly perturbed parabolic convection-diffusion problems [J].
Kuldeep ;
Kumar, Sunil .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2022, 28 (05) :676-694
[22]   New approach of convergent numerical method for singularly perturbed delay parabolic convection-diffusion problems [J].
Hassen, Zerihun Ibrahim ;
Duressa, Gemechis File .
RESEARCH IN MATHEMATICS, 2023, 10 (01)
[23]   Alternating direction numerical scheme for singularly perturbed 2D degenerate parabolic convection-diffusion problems [J].
Majumdar, Anirban ;
Natesan, Srinivasan .
APPLIED MATHEMATICS AND COMPUTATION, 2017, 313 :453-473
[24]   A parameter-uniform hybrid finite difference scheme for singularly perturbed system of parabolic convection-diffusion problems [J].
Singh, Maneesh Kumar ;
Natesan, Srinivasan .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2020, 97 (04) :875-905
[25]   Parameter-uniform numerical method for singularly perturbed 2-D parabolic convection-diffusion problem with interior layers [J].
Majumdar, Anirban ;
Natesan, Srinivasan .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (05) :3039-3057
[26]   Richardson extrapolation technique for singularly perturbed parabolic convection-diffusion problems [J].
Mukherjee, Kaushik ;
Natesan, Srinivasan .
COMPUTING, 2011, 92 (01) :1-32
[27]   Richardson Extrapolation Method for Singularly Perturbed Convection-Diffusion Problems on Adaptively Generated Mesh [J].
Das, Pratibhamoy ;
Natesan, Srinivasan .
CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2013, 90 (06) :463-485
[28]   Robust Numerical Method for Singularly Perturbed Convection-Diffusion Type Problems with Non-local Boundary Condition [J].
Debela, Habtamu G. ;
Woldaregay, Mesfin M. ;
Duressa, Gemechis F. .
MATHEMATICAL MODELLING AND ANALYSIS, 2022, 27 (02) :199-214
[29]   Numerical solutions of singularly perturbed one-dimensional parabolic convection-diffusion problems by the Bessel collocation method [J].
Yuzbasi, Suayip ;
Sahin, Niyazi .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 220 :305-315
[30]   Uniformly convergent hybrid numerical scheme for singularly perturbed delay parabolic convection-diffusion problems on Shishkin mesh [J].
Das, Abhishek ;
Natesan, Srinivasan .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 271 :168-186