A MACHINE LEARNING APPROACH FOR THE PREDICTION OF TIME-AVERAGED UNSTEADY FLOWS IN TURBOMACHINERY

被引:0
|
作者
Blechschmidt, Dominik [1 ,2 ]
Mimic, Dajan [1 ,2 ]
机构
[1] Leibniz Univ Hannover, Inst Turbomachinery & Fluid Dynam, Hannover, Germany
[2] TU Braunschweig, Cluster Excellence Sustainable & Energy Efficient, Braunschweig, Germany
来源
PROCEEDINGS OF ASME TURBO EXPO 2023: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, GT2023, VOL 13D | 2023年
关键词
Unsteady Flow; Axial Compressors; Deep Learning; Machine Learning; NETWORKS;
D O I
暂无
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Recent advances in deep learning have led to its increased application in the field of fluid dynamics. By using a data-driven approach instead of a more conventional numerical approach, it is possible to reduce the computational cost of fluid simulations significantly. Especially unsteady computational fluid dynamics (CFD) are known to require a considerable amount of time and resources. Hence, it is common practice in turbomachinery to model the flow as steady by averaging the flow between the rotor and stator in a so-called mixing plane. While this approach is numerically efficient, the full interactions between the rotor and the stator can no longer be predicted accurately due to the averaged upstream flow field. Contrary to this, the time-average of an actual unsteady flow does not contain such a modeling error while still resulting in a flow field that is decoupled from its temporal fluctuations. In this work, we introduce a graph neural network (GNN), which predicts the time-averaged flow field of a rotor stage in an axial compressor based on its steady solution. Because GNNs are able to operate directly on the high-fidelity CFD mesh, we are able to retain the spatial resolution necessary to depict more complex flow behaviour. Consequently, the fidelity of our predictions can compete with conventional high-accuracy flow simulations. Our model is capable of predicting the velocity, pressure, density, and temperature field of a single rotor stage from a 4 1/2 -stage axial compressor test case and shows significant improvements compared to the steady state solution, while also being substantially faster than conventional unsteady CFD simulations.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Time Series Prediction Based on Machine Learning
    Jiang, Q. Y.
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON ELECTRICAL, AUTOMATION AND MECHANICAL ENGINEERING (EAME 2015), 2015, 13 : 128 - 129
  • [22] Success Prediction of Leads - A Machine Learning Approach
    Gil Custodio, Joao Pedro
    Costa, Carlos J.
    Carvalho, Joao Paulo
    2020 15TH IBERIAN CONFERENCE ON INFORMATION SYSTEMS AND TECHNOLOGIES (CISTI'2020), 2020,
  • [23] A Machine Learning Approach for Stock Price Prediction
    Leung, Carson Kai-Sang
    MacKinnon, Richard Kyle
    Wang, Yang
    PROCEEDINGS OF THE 18TH INTERNATIONAL DATABASE ENGINEERING AND APPLICATIONS SYMPOSIUM (IDEAS14), 2014, : 274 - 277
  • [24] Machine learning approach for pavement performance prediction
    Marcelino, Pedro
    Antunes, Maria de Lurdes
    Fortunato, Eduardo
    Gomes, Marta Castilho
    INTERNATIONAL JOURNAL OF PAVEMENT ENGINEERING, 2021, 22 (03) : 341 - 354
  • [25] A Machine Learning Approach to TCP Throughput Prediction
    Mirza, Mariyam
    Sommers, Joel
    Barford, Paul
    Zhu, Xiaojin
    SIGMETRICS'07: PROCEEDINGS OF THE 2007 INTERNATIONAL CONFERENCE ON MEASUREMENT & MODELING OF COMPUTER SYSTEMS, 2007, 35 (01): : 97 - 108
  • [26] A Machine Learning Approach for Employee Retention Prediction
    Marvin, Ggaliwango
    Jackson, Majwega
    Alam, Md Golam Rabiul
    2021 IEEE REGION 10 SYMPOSIUM (TENSYMP), 2021,
  • [27] Email Reply Prediction: A Machine Learning Approach
    Ayodele, Taiwo
    Zhou, Shikun
    Khusainov, Rinat
    HUMAN INTERFACE AND THE MANAGEMENT OF INFORMATION: INFORMATION AND INTERACTION, PT II, 2009, 5618 : 114 - 123
  • [28] A Machine Learning Approach for the Prediction of Top of Descent
    Benjamin, Tan Zhi Yong
    Alam, Sameer
    Ma, Chun Yao
    2021 IEEE/AIAA 40TH DIGITAL AVIONICS SYSTEMS CONFERENCE (DASC), 2021,
  • [29] Machine Learning for Seizure Prediction: A Revamped Approach
    Kumar, Sai A.
    Nigam, Lavi
    Karnam, Deepthi
    Murthy, Sreerama K.
    Fedorovych, Petro
    Kalidindi, Vasu
    2015 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2015, : 1159 - 1164
  • [30] A machine learning approach for the prediction of settling velocity
    Goldstein, Evan B.
    Coco, Giovanni
    WATER RESOURCES RESEARCH, 2014, 50 (04) : 3595 - 3601