A MACHINE LEARNING APPROACH FOR THE PREDICTION OF TIME-AVERAGED UNSTEADY FLOWS IN TURBOMACHINERY

被引:0
|
作者
Blechschmidt, Dominik [1 ,2 ]
Mimic, Dajan [1 ,2 ]
机构
[1] Leibniz Univ Hannover, Inst Turbomachinery & Fluid Dynam, Hannover, Germany
[2] TU Braunschweig, Cluster Excellence Sustainable & Energy Efficient, Braunschweig, Germany
来源
PROCEEDINGS OF ASME TURBO EXPO 2023: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, GT2023, VOL 13D | 2023年
关键词
Unsteady Flow; Axial Compressors; Deep Learning; Machine Learning; NETWORKS;
D O I
暂无
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Recent advances in deep learning have led to its increased application in the field of fluid dynamics. By using a data-driven approach instead of a more conventional numerical approach, it is possible to reduce the computational cost of fluid simulations significantly. Especially unsteady computational fluid dynamics (CFD) are known to require a considerable amount of time and resources. Hence, it is common practice in turbomachinery to model the flow as steady by averaging the flow between the rotor and stator in a so-called mixing plane. While this approach is numerically efficient, the full interactions between the rotor and the stator can no longer be predicted accurately due to the averaged upstream flow field. Contrary to this, the time-average of an actual unsteady flow does not contain such a modeling error while still resulting in a flow field that is decoupled from its temporal fluctuations. In this work, we introduce a graph neural network (GNN), which predicts the time-averaged flow field of a rotor stage in an axial compressor based on its steady solution. Because GNNs are able to operate directly on the high-fidelity CFD mesh, we are able to retain the spatial resolution necessary to depict more complex flow behaviour. Consequently, the fidelity of our predictions can compete with conventional high-accuracy flow simulations. Our model is capable of predicting the velocity, pressure, density, and temperature field of a single rotor stage from a 4 1/2 -stage axial compressor test case and shows significant improvements compared to the steady state solution, while also being substantially faster than conventional unsteady CFD simulations.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] A Machine Learning Approach for Prediction of On-time Performance of Flights
    Thiagarajan, Balasubramanian
    Srinivasan, Lakshminarasimhan
    Sharma, Aditya Vikram
    Sreekanthan, Dinesh
    Vijayaraghavan, Vineeth
    2017 IEEE/AIAA 36TH DIGITAL AVIONICS SYSTEMS CONFERENCE (DASC), 2017,
  • [2] Numerical investigation of unsteady transitional flows in turbomachinery components based on a RANS approach
    Nürnberger, D
    Greza, H
    FLOW TURBULENCE AND COMBUSTION, 2002, 69 (3-4) : 331 - 353
  • [3] Machine learning for aircraft approach time prediction
    Ye B.
    Bao X.
    Liu B.
    Tian Y.
    Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2020, 41 (10):
  • [4] Numerical Investigation of Unsteady Transitional Flows in Turbomachinery Components Based on a RANS Approach
    Dirk Nürnberger
    Harald Greza
    Flow, Turbulence and Combustion, 2002, 69 : 331 - 353
  • [5] A Machine Learning Approach to Waiting Time Prediction in Queueing Scenarios
    Kyritsis, Athanasios, I
    Deriaz, Michel
    2019 SECOND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE FOR INDUSTRIES (AI4I 2019), 2019, : 17 - 21
  • [6] App Uninstalls Prediction: A Machine Learning and Time Series Mining Approach
    Shang, Jiaxing
    Wang, Jinghao
    Liu, Ge
    Wu, Hongchun
    Zhou, Shangbo
    Feng, Yong
    NEURAL INFORMATION PROCESSING, ICONIP 2017, PT V, 2017, 10638 : 514 - 522
  • [7] Machine learning for surgical time prediction
    Martinez, Oscar
    Martinez, Carol
    Parra, Carlos A.
    Rugeles, Saul
    Suarez, Daniel R.
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2021, 208
  • [8] A Naive Bayes machine learning approach to risk prediction using censored, time-to-event data
    Wolfson, Julian
    Bandyopadhyay, Sunayan
    Elidrisi, Mohamed
    Vazquez-Benitez, Gabriela
    Vock, David M.
    Musgrove, Donald
    Adomavicius, Gediminas
    Johnson, Paul E.
    O'Connor, Patrick J.
    STATISTICS IN MEDICINE, 2015, 34 (21) : 2941 - 2957
  • [9] What are tenants demanding the most? A machine learning approach for the prediction of time on market
    Cajias, Marcelo
    Freudenreich, Anna
    JOURNAL OF PROPERTY INVESTMENT & FINANCE, 2024, 42 (02) : 151 - 165
  • [10] A Machine Learning Approach for an HPC Use Case: the Jobs Queuing Time Prediction
    Vercellino, Chiara
    Scionti, Alberto
    Varavallo, Giuseppe
    Viviani, Paolo
    Vitali, Giacomo
    Terzo, Olivier
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2023, 143 : 215 - 230