Computational and dark-field ghost imaging with ultraviolet light

被引:4
|
作者
Song, Jiaqi [1 ]
Liu, Baolei [1 ]
Wang, Yao [1 ]
Chen, Chaohao [2 ]
Shan, Xuchen [1 ]
Zhong, Xiaolan [1 ]
Wu, Ling-An [3 ]
Wang, Fan [1 ]
机构
[1] Beihang Univ, Sch Phys, Beijing 102206, Peoples R China
[2] Australian Natl Univ, Australian Res Council Ctr Excellence Transformat, Dept Elect Mat Engn, Res Sch Phys, Canberra, ACT 2600, Australia
[3] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
CAMERA;
D O I
10.1364/PRJ.503974
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Ultraviolet (UV) imaging enables a diverse array of applications, such as material composition analysis, biological fluorescence imaging, and detecting defects in semiconductor manufacturing. However, scientific-grade UV cameras with high quantum efficiency are expensive and include complex thermoelectric cooling systems. Here, we demonstrate a UV computational ghost imaging (UV-CGI) method to provide a cost-effective UV imaging and detection strategy. By applying spatial-temporal illumination patterns and using a 325 nm laser source, a single-pixel detector is enough to reconstruct the images of objects. We use UV-CGI to distinguish four UV-sensitive sunscreen areas with different densities on a sample. Furthermore, we demonstrate dark-field UV-CGI in both transmission and reflection schemes. By only collecting the scattered light from objects, we can detect the edges of pure phase objects and small scratches on a compact disc. Our results showcase a feasible low-cost solution for nondestructive UV imaging and detection. By combining it with other imaging techniques, such as hyperspectral imaging or time-resolved imaging, a compact and versatile UV computational imaging platform may be realized for future applications. (c) 2024 Chinese Laser Press
引用
收藏
页码:226 / 234
页数:15
相关论文
共 50 条
  • [41] ATOMIC IMAGING USING THE DARK-FIELD ANNULAR DETECTOR IN THE STEM
    ISAACSON, M
    KOPF, D
    OHTSUKI, M
    UTLAUT, M
    ULTRAMICROSCOPY, 1979, 4 (01) : 101 - 104
  • [42] Dark-Field Imaging: Recent developments and potential clinical applications
    Ando, Masami
    Sunaguchi, Naoki
    Shimao, Daisuke
    Pan, Adam
    Yuasa, Tetsuya
    Mori, Kensaku
    Suzuki, Yoshifumi
    Jin, Ge
    Kim, Jong-Ki
    Lim, Jae-Hong
    Seo, Seung-Jun
    Ichihara, Shu
    Ohura, Norihiko
    Gupta, Rajiv
    PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2016, 32 (12): : 1801 - 1812
  • [43] Energy weighted x-ray dark-field imaging
    Pelzer, Georg
    Zang, Andrea
    Anton, Gisela
    Bayer, Florian
    Horn, Florian
    Kraus, Manuel
    Rieger, Jens
    Ritter, Andre
    Wandner, Johannes
    Weber, Thomas
    Fauler, Alex
    Fiederle, Michael
    Wong, Winnie S.
    Campbell, Michael
    Meiser, Jan
    Meyer, Pascal
    Mohr, Juergen
    Michel, Thilo
    OPTICS EXPRESS, 2014, 22 (20): : 24507 - 24515
  • [44] Numerical dark-field imaging using deep-learning
    Meng, Zhang
    Ding, Liqi
    Feng, Shaotong
    Xing, FangJian
    Nie, Shouping
    Ma, Jun
    Pedrini, Giancarlo
    Yuan, Caojin
    OPTICS EXPRESS, 2020, 28 (23): : 34266 - 34278
  • [45] Automated bacterial identification by angle resolved dark-field imaging
    Wilson, Benjamin K.
    Vigil, Genevieve D.
    BIOMEDICAL OPTICS EXPRESS, 2013, 4 (09): : 1692 - 1701
  • [46] Dark-field imaging of the in vitro corrosion of biodegradable magnesium screws
    Senck, Sascha
    Glinz, Jonathan
    Salaberger, Daniel
    Heupl, Sarah
    Kastner, Johann
    Trieb, Klemens
    Koutny, Daniel
    Gneiger, Stefan
    e-Journal of Nondestructive Testing, 2024, 29 (03):
  • [47] Quantitative Neutron Dark-Field Imaging of Milk: A Feasibility Study
    Kim, Youngju
    Valsecchi, Jacopo
    Oh, Ohsung
    Kim, Jongyul
    Lee, Seung Wook
    Boue, Francois
    Lutton, Evelyne
    Busi, Matteo
    Garvey, Christopher
    Strobl, Markus
    APPLIED SCIENCES-BASEL, 2022, 12 (02):
  • [48] Signal decomposition for X-ray dark-field imaging
    Pattern Recognition Lab, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
    不详
    不详
    Kaeppler, Sebastian, 1600, Springer Verlag (8673):
  • [49] Structured dark-field imaging for single nano-particles
    陈健
    高昆
    王志立
    云文兵
    吴自玉
    Chinese Physics B, 2015, (08) : 497 - 500
  • [50] Scattering Imaging of Single Quantum Dots with Dark-Field Microscopy
    Bu, Xiaobing
    Chen, Huaping
    Gai, Hongwei
    Yang, Ronghua
    Yeung, Edward S.
    ANALYTICAL CHEMISTRY, 2009, 81 (17) : 7507 - 7509