Rechargeable Zn-H2O hydrolysis battery for hydrogen storage and production

被引:25
作者
Cai, Muya [1 ,2 ]
Shi, Hao [1 ,2 ]
Zhang, Yu [1 ,2 ]
Qu, Jiakang [1 ,2 ]
Wang, Hongya [1 ,2 ]
Guo, Yanyang [1 ,2 ]
Du, Kaifa [1 ,2 ]
Li, Wei [1 ,2 ]
Deng, Bowen [1 ,2 ]
Wang, Dihua [1 ,2 ,3 ,4 ]
Yin, Huayi [1 ,2 ,3 ,4 ]
机构
[1] Wuhan Univ, Sch Resource & Environm Sci, 299 Bayi Rd, Wuhan 430072, Peoples R China
[2] Wuhan Univ, Int Cooperat Base Sustainable Utilizat Resources &, Wuhan 430072, Peoples R China
[3] Wuhan Univ, State Key Lab Water Resources Hydropower Engn Sci, Wuhan 430072, Peoples R China
[4] Hubei Prov Key Lab Biomass Resource Chem & Environ, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
hydrolysis reaction; Zn-H2O battery; hydrogen storage; decoupled water splitting; MEMBRANE ELECTROLYZERS; OXYGEN EVOLUTION; WATER; CYCLES; IMPACT; H-2;
D O I
10.1002/anie.202404025
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Reactive metals hydrolysis offers significant advantages for hydrogen storage and production. However, the regeneration of common reactive metals (e.g., Mg, Al, etc.) is energy-intensive and produces unwanted byproducts such as CO2 and Cl-2. Herein, we employ Zn as a reactive mediator that can be easily regenerated by electrolysis of ZnO in an alkaline solution with a Faradaic efficiency of >99.9 %. H-2 is produced in the same electrolyte by constructing a Zn-H2O hydrolysis battery consisting of a Zn anode and a Raney-Ni cathode to unlock the Zn-H2O reaction. The entire two-step water splitting reaction with a net energy efficiency of 70.4 % at 80 degrees C and 50 mA cm(-2). Additionally, the Zn-H2O system can be charged using renewable energy to produce H-2 on demand and runs for 600 cycles only sacrificing 3.76 % energy efficiency. DFT calculations reveal that the desorption of H* on Raney-Ni (-0.30 eV) is closer to zero compared with that on Zn (-0.87 eV), indicating a faster desorption of H* at low overpotential. Further, a 24 Ah electrolyzer is demonstrated to produce H-2 with a net energy efficiency of 65.5 %, which holds promise for its real application.
引用
收藏
页数:9
相关论文
共 58 条
[1]  
Biswas S., 2023, ENERG FUEL
[2]   Activation of silicon towards hydrogen generation by pelletisation [J].
Brack, Paul ;
Chillman, Matthew ;
Wijayantha, K. G. U. ;
Adcock, Paul ;
Foster, Simon ;
Dann, S. E. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 704 :146-151
[3]   Alkaline-Acid Zn-H2O Fuel Cell for the Simultaneous Generation of Hydrogen and Electricity [J].
Cai, Pingwei ;
Li, Yan ;
Wang, Genxiang ;
Wen, Zhenhai .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (15) :3910-+
[4]   Pt NPs-loaded siloxene nanosheets for hydrogen co-evolutions from Zn-H2O fuel cells-powered water-splitting [J].
Chen, Chang ;
Tian, Han ;
Fu, Zhengqian ;
Cui, Xiangzhi ;
Kong, Fantao ;
Meng, Ge ;
Chen, Yafeng ;
Qi, Fenggang ;
Chang, Ziwei ;
Zhu, Libo ;
Huang, Haitao ;
Shi, Jianlin ;
Xia, Bao Yu .
APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2022, 304
[5]   Highly reduced and protonated aqueous solutions of [P2W18O62]6- for on-demand hydrogen generation and energy storage [J].
Chen, Jia-Jia ;
Symes, Mark D. ;
Cronin, Leroy .
NATURE CHEMISTRY, 2018, 10 (10) :1042-1047
[6]   Boosting alkaline hydrogen evolution and Zn-H2O cell induced by interfacial electron transfer [J].
Cheng, Fanpeng ;
Wang, Lin ;
Wang, Hanqing ;
Lei, Chaojun ;
Yang, Bin ;
Li, Zhongjian ;
Zhang, Qinghua ;
Lei, Lecheng ;
Wang, Shaobin ;
Hou, Yang .
NANO ENERGY, 2020, 71
[7]   A self-circulating pathway for the oxygen evolution reaction [J].
Deng, Bohan ;
Yu, Guangqiang ;
Zhao, Wei ;
Long, Yuanzheng ;
Yang, Cheng ;
Du, Peng ;
He, Xian ;
Zhang, Zhuting ;
Huang, Kai ;
Li, Xibo ;
Wu, Hui .
ENERGY & ENVIRONMENTAL SCIENCE, 2023, 16 (11) :5210-5219
[8]   On-demand hydrogen generation by the hydrolysis of ball-milled aluminum composites: A process overview [J].
du Preez, S. P. ;
Bessarabov, D. G. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (72) :35790-35813
[9]   Affordable Green Hydrogen from Alkaline Water Electrolysis: Key Research Needs from an Industrial Perspective [J].
Ehlers, Johan C. ;
Feidenhans'l, Anders A. ;
Therkildsen, Kasper T. ;
Larrazabal, Gaston O. .
ACS ENERGY LETTERS, 2023, 8 (03) :1502-1509
[10]   Catalytic Advantages, Challenges, and Priorities in Alkaline Membrane Fuel Cells [J].
Firouzjaie, Horie Adabi ;
Mustain, William E. .
ACS CATALYSIS, 2020, 10 (01) :225-234