A relaxed projection method for solving bilevel variational inequality problems

被引:4
作者
Anh, Pham Ngoc [1 ]
Khanh, Phan Quoc [2 ]
Truong, Nguyen Duc [3 ]
机构
[1] Posts & Telecommun Inst Technol, Lab Appl Math & Comp, Hanoi, Vietnam
[2] Ton Duc Thang Univ, Fac Math & Stat, Optimizat Res Grp, Ho Chi Minh City, Vietnam
[3] Hai Phong Univ, Dept Math, Hai Phong, Vietnam
关键词
Bilevel variational inequality problem; solution mapping; quasi-nonexpansive; projection method; quasimonotone; 65; K10; 90; C25; 49; J35; 47; J25; J20; EXTRAGRADIENT METHOD; STRONG-CONVERGENCE; ALGORITHM; STEP;
D O I
10.1080/02331934.2024.2354456
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this work, we present a new relaxed projection approach to solve bilevel variational inequality problems in a real Hilbert space. First, we introduce a solution mapping of the variational inequality problem and analyze its strongly quasi-nonexpansiveness. Next, by using this mapping we present a relaxed projection algorithm for solving bilevel variational inequality problems. Under pseudomonotonicity assumptions on the cost mappings, strong convergence of iteration sequences is proved. Finally, we give some numerical results to illustrate the proposed algorithm.
引用
收藏
页数:26
相关论文
共 47 条
[1]   An extragradient algorithm for solving bilevel pseudomonotone variational inequalities [J].
Anh, P. N. ;
Kim, J. K. ;
Muu, L. D. .
JOURNAL OF GLOBAL OPTIMIZATION, 2012, 52 (03) :627-639
[2]   Strong Convergence Theorem for the Lexicographic Ky Fan Inequality [J].
Anh P.N. ;
Thuy L.Q. ;
Anh T.T.H. .
Vietnam Journal of Mathematics, 2018, 46 (3) :517-530
[3]   Relaxed projection methods for solving variational inequality problems [J].
Anh, Pham Ngoc .
JOURNAL OF GLOBAL OPTIMIZATION, 2024, 90 (04) :909-930
[4]   New Outer Proximal Methods for Solving Variational Inequality Problems [J].
Anh, Pham Ngoc .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2023, 198 (02) :479-501
[5]   New projection methods for equilibrium problems over fixed point sets [J].
Anh, Pham Ngoc ;
Van Hong, Nguyen .
OPTIMIZATION LETTERS, 2021, 15 (02) :627-648
[6]   Subgradient projection methods extended to monotone bilevel equilibrium problems in Hilbert spaces [J].
Anh, Pham Ngoc ;
Tu, Ho Phi .
NUMERICAL ALGORITHMS, 2021, 86 (01) :55-74
[7]  
Bauschke HH, 2011, CMS BOOKS MATH, P1, DOI 10.1007/978-1-4419-9467-7
[8]   GENERALIZED PROXIMAL DISTANCES FOR BILEVEL EQUILIBRIUM PROBLEMS [J].
Bento, G. C. ;
Cruz Neto, J. X. ;
Lopes, J. O. ;
Soares, P. A., Jr. ;
Soubeyran, A. .
SIAM JOURNAL ON OPTIMIZATION, 2016, 26 (01) :810-830
[9]  
BERTSEKAS DP, 1982, MATH PROGRAM STUD, V17, P139
[10]   Lexicographic variational inequalities with applications [J].
Bianchi, M. ;
Konnov, I. V. ;
Pini, R. .
OPTIMIZATION, 2007, 56 (03) :355-367