Supersolvable descent for rational points

被引:1
作者
Harpaz, Yonatan [1 ]
Wittenberg, Olivier [1 ]
机构
[1] Univ Sorbonne Paris Nord, Inst Galilee, Villetaneuse, France
关键词
rational points; descent; inverse Galois problem; HOMOGENEOUS SPACES; NUMBER-FIELDS; 2; QUADRICS; INTERSECTIONS; OBSTRUCTION; COHOMOLOGY; TORSORS;
D O I
10.2140/ant.2024.18.787
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct an analogue of the classical descent theory of Colliot-Thelene and Sansuc in which algebraic tori are replaced with finite supersolvable groups. As an application, we show that rational points are dense in the Brauer-Manin set for smooth compactifications of certain quotients of homogeneous spaces by finite supersolvable groups. For suitably chosen homogeneous spaces, this implies the existence of supersolvable Galois extensions of number fields with prescribed norms, generalising work of Frei, Loughran and Newton.
引用
收藏
页码:787 / 814
页数:28
相关论文
共 50 条
[41]  
SERRE JP, 1994, LECT NOTES MATH, V5
[42]  
Skorobogatov A. N., 2015, London Math. Soc. Lecture Note Ser., V420, P422
[43]  
SKOROBOGATOV AN, 2001, CAMBRIDGE TRACTS MAT, V144
[44]  
Skorobogatov AN, 2021, Ergebnisse der Math, V71
[45]  
Swinnerton-Dyer H.P. F., 1972, ALGEBRAIC GEOM, P287
[46]   QUOTIENTS OF DEL PEZZO SURFACES OF HIGH DEGREE [J].
Trepalin, Andrey .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (09) :6097-6124
[47]   A COUNTER-EXAMPLE TO GRUNWALD THEOREM [J].
WANG, S .
ANNALS OF MATHEMATICS, 1948, 49 (04) :1008-1009
[48]  
Wei DS, 2016, Arxiv, DOI arXiv:1604.00610
[49]   On Albanese torsors and the elementary obstruction [J].
Wittenberg, Olivier .
MATHEMATISCHE ANNALEN, 2008, 340 (04) :805-838
[50]   Rational points and zero-cycles on rationally connected varieties over number fields [J].
Wittenberg, Olivier .
ALGEBRAIC GEOMETRY: SALT LAKE CITY 2015, PT 2, 2018, 97 :597-635