Deep learning in neglected vector-borne diseases: a systematic review

被引:1
作者
Mishra, Atmika [1 ]
Pandey, Arya [1 ]
Malhotra, Ruchika [1 ]
机构
[1] Delhi Technol Univ, Dept Software Engn, Bawana Rd, Delhi 110042, India
关键词
Deep learning; Neglected diseases; Vector-borne diseases; Neural network; O33; I10; ARTIFICIAL NEURAL-NETWORKS; IDENTIFICATION;
D O I
10.1007/s13198-024-02380-1
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study explores the application of Deep Learning in combating neglected vector-borne Diseases, a significant global health concern, particularly in resource-limited areas. It examines areas where Deep Learning has proven effective, compares popular Deep Learning techniques, focuses on interdisciplinary approaches with translational impact, and finds untapped potential for deep learning application. Thorough searches across multiple databases yielded 64 pertinent studies, from which 16 were selected based on inclusion criteria and quality assessment. Deep Learning applications in disease transmission risk prediction, vector detection, parasite classification, and treatment procedure optimization were investigated and focused on diseases such as Schistosomiasis, Chagas disease, Leishmaniasis, Echinococcosis, and Trachoma. Convolutional neural networks, artificial neural networks, multilayer perceptrons, and AutoML algorithms surpassed traditional methods for disease prediction, species identification, and diagnosis. The interdisciplinary integration of Deep Learning with public health, entomology, and epidemiology provides prospects for improved disease control and understanding. Deep Learning models automate disease surveillance, simplify epidemiological data processing, and enable early detection, particularly in resource-constrained settings. Smartphone apps driven by deep learning allow for rapid disease diagnosis and identification, boosting healthcare accessibility and global health outcomes. Improved algorithms, broadening the scope of applications to areas such as one health approach, and community engagement, and expanding deep learning applications to diseases such as lymphatic filariasis, hydatidosis, and onchocerciasis hold promise for improving global health outcomes.
引用
收藏
页数:13
相关论文
共 21 条
[11]   Prediction of lymph node parasite load from clinical data in dogs with leishmaniasis: An application of radial basis artificial neural networks [J].
Pintor Torrecilha, Rafaela Beatriz ;
Utsunomiya, Yuri Tani ;
da Silva Batista, Luis Fabio ;
Bosco, Anelise Maria ;
Nunes, Caris Maroni ;
Ciarlini, Paulo Cesar ;
Laurenti, Marcia Dalastra .
VETERINARY PARASITOLOGY, 2017, 234 :13-18
[12]  
Shaikh SG., 2023, Int J Intell Syst Appl Eng, V11, P517
[13]  
Sharma D K., 2022, Deep Learning for Medical Applications with Unique Data, P31, DOI [DOI 10.1016/B978-0-12-824145-5.00005-8, 10.1016/B978-0-12-824145-5.00005-8]
[14]   Identification of Snails and Schistosoma of Medical Importance via Convolutional Neural Networks: A Proof-of-Concept Application for Human Schistosomiasis [J].
Tallam, Krti ;
Liu, Zac Yung-Chun ;
Chamberlin, Andrew J. ;
Jones, Isabel J. ;
Shome, Pretom ;
Riveau, Gilles ;
Ndione, Raphael A. ;
Bandagny, Lydie ;
Jouanard, Nicolas ;
Van Eck, Paul ;
Ngo, Ton ;
Sokolow, Susanne H. ;
De Leo, Giulio A. .
FRONTIERS IN PUBLIC HEALTH, 2021, 9
[15]   Detection and subtyping of hepatic echinococcosis from plain CT images with deep learning: a retrospective, multicentre study [J].
Wang, Zhan ;
Bian, Haiyang ;
Li, Jiaqi ;
Xu, Jin ;
Fan, Haining ;
Wu, Xinze ;
Cao, Yuntai ;
Guo, Bin ;
Xu, Xiaolei ;
Wang, Haijiu ;
Zhang, Lingqiang ;
Zhou, Hu ;
Fan, Jianfeng ;
Ren, Youyou ;
Geng, Yunping ;
Feng, Xiaobin ;
Li, Luming ;
Wei, Lei ;
Zhang, Xuegong .
LANCET DIGITAL HEALTH, 2023, 5 (11) :E754-E762
[16]   Automatic Classification of Hepatic Cystic Echinococcosis Using Ultrasound Images and Deep Learning [J].
Wu, Miao ;
Yan, Chuanbo ;
Wang, Xiaorong ;
Liu, Qian ;
Liu, Zhihua ;
Song, Tao .
JOURNAL OF ULTRASOUND IN MEDICINE, 2022, 41 (01) :163-174
[17]   Automatic lesion segmentation and classification of hepatic echinococcosis using a multiscale-feature convolutional neural network [J].
Xin, Shenghai ;
Shi, Huabei ;
Jide, A. ;
Zhu, Mingyu ;
Ma, Cong ;
Liao, Hongen .
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2020, 58 (03) :659-668
[18]   Transmission Risks of Schistosomiasis Japonica: Extraction from Back-propagation Artificial Neural Network and Logistic Regression Model [J].
Xu, Jun-Fang ;
Xu, Jing ;
Li, Shi-Zhu ;
Jia, Tia-Wu ;
Huang, Xi-Bao ;
Zhang, Hua-Ming ;
Chen, Mei ;
Yang, Guo-Jing ;
Gao, Shu-Jing ;
Wang, Qing-Yun ;
Zhou, Xiao-Nong .
PLOS NEGLECTED TROPICAL DISEASES, 2013, 7 (03)
[19]   Ultrasound identification of hepatic echinococcosis using a deep convolutional neural network model in China: a retrospective, large-scale, multicentre, diagnostic accuracy study [J].
Yang, Yongfeng ;
Cairang, Yangdan ;
Jiang, Tian'an ;
Zhou, Jianhua ;
Zhang, Li ;
Qi, Baowen ;
Ma, Shumei ;
Tang, Lina ;
Xu, Dong ;
Bu, Lingdai ;
Bu, Rui ;
Jing, Xiang ;
Wang, Hui ;
Zhou, Zubang ;
Zhao, Cheng ;
Luo, Baoming ;
Liu, Liwen ;
Guo, Jianqin ;
Nima, Yuzhen ;
Hua, Guoyong ;
Wa, Zengcheng ;
Zhang, Yuying ;
Zhou, Guoyi ;
Jiang, Wen ;
Wang, Changcheng ;
De, Yang ;
Yu, Xiaoling ;
Cheng, Zhigang ;
Han, Zhiyu ;
Liu, Fangyi ;
Dou, Jianping ;
Feng, Hui ;
Wu, Chong ;
Wang, Ruifang ;
Hu, Jie ;
Yang, Qi ;
Luo, Yanchun ;
Wu, Jiapeng ;
Fan, Haining ;
Liang, Ping ;
Yu, Jie .
LANCET DIGITAL HEALTH, 2023, 5 (08) :E503-E514
[20]   Popular deep learning algorithms for disease prediction: a review [J].
Yu, Zengchen ;
Wang, Ke ;
Wan, Zhibo ;
Xie, Shuxuan ;
Lv, Zhihan .
CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2023, 26 (02) :1231-1251