Optimal Extragradient-Based Algorithms for Stochastic Variational Inequalities with Separable Structure

被引:0
作者
Yuan, Huizhuo [1 ]
Li, Chris Junchi [2 ]
Gidel, Gauthier [3 ,4 ]
Jordan, Michael I. [2 ,5 ]
Gu, Quanquan [1 ]
Du, Simon S. [6 ]
机构
[1] Univ Calif Los Angeles, Dept Comp Sci, Los Angeles, CA 90024 USA
[2] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA USA
[3] Univ Montreal, DIRO, Montreal, PQ, Canada
[4] Mila, Montreal, PQ, Canada
[5] Univ Calif Berkeley, Dept Stat, Berkeley, CA USA
[6] Univ Washington, Paul G Allen Sch Comp Sci & Engn, Seattle, WA USA
来源
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023) | 2023年
基金
美国国家科学基金会;
关键词
UNIFIED ANALYSIS; CONVERGENCE; GRADIENT;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider the problem of solving stochastic monotone variational inequalities with a separable structure using a stochastic first-order oracle. Building on standard extragradient for variational inequalities we propose a novel algorithm-stochastic accelerated gradient-extragradient (AG-EG)-for strongly monotone variational inequalities (VIs). Our approach combines the strengths of extragradient and Nesterov acceleration. By showing that its iterates remain in a bounded domain and applying scheduled restarting, we prove that AG-EG has an optimal convergence rate for strongly monotone VIs. Furthermore, when specializing to the particular case of bilinearly coupled strongly-convex-strongly-concave saddle-point problems, including bilinear games, our algorithm achieves fine-grained convergence rates that match the respective lower bounds, with the stochasticity being characterized by an additive statistical error term that is optimal up to a constant prefactor.
引用
收藏
页数:14
相关论文
共 67 条
[1]  
[Anonymous], 2017, INT C MACH LEARN
[2]  
[Anonymous], 2008, SIAM Journal on Optimization
[3]  
Azizian W, 2020, PR MACH LEARN RES, V108, P1705
[4]  
Azizian W, 2020, PR MACH LEARN RES, V108, P2863
[5]   Accelerated schemes for a class of variational inequalities [J].
Chen, Yunmei ;
Lan, Guanghui ;
Ouyang, Yuyuan .
MATHEMATICAL PROGRAMMING, 2017, 165 (01) :113-149
[6]   OPTIMAL PRIMAL-DUAL METHODS FOR A CLASS OF SADDLE POINT PROBLEMS [J].
Chen, Yunmei ;
Lan, Guanghui ;
Ouyang, Yuyuan .
SIAM JOURNAL ON OPTIMIZATION, 2014, 24 (04) :1779-1814
[7]  
Chen Zhen., 2021, Arxiv
[8]  
Cohen M B., 2021, LIPIcs, V185, page, P62
[9]  
Dann C, 2014, J MACH LEARN RES, V15, P809
[10]  
Daskalakis Constantinos., 2018, ICLR