Higher order boundary Schauder estimates in Carnot groups

被引:0
作者
Banerjee, Agnid [1 ,2 ]
Garofalo, Nicola [3 ]
Munive, Isidro H. [4 ]
机构
[1] Arizona State Univ, Tempe, AZ 85287 USA
[2] Tata Inst Fundamental Res CAM, Bangalore 560065, India
[3] Univ Padua, Dipartimento Ingn Civile Edile & Ambientale DICEA, I-35131 Padua, Italy
[4] Univ Guadalajara, Guadalajara, Mexico
关键词
DIRICHLET PROBLEM; HEISENBERG-GROUP; KOHN-LAPLACIAN; REGULARITY; EQUATIONS; OPERATORS; GEOMETRY; DOMAINS;
D O I
10.1007/s00208-024-02901-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In his seminal 1981 study D. Jerison showed the remarkable negative phenomenon that there exist, in general, no Schauder estimates near the characteristic boundary in the Heisenberg group Hn.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {H}<^>{n}.$$\end{document} On the positive side, by adapting tools from Fourier and microlocal analysis, he developed a Schauder theory at a non-characteristic portion of the boundary, based on the non-isotropic Folland-Stein H & ouml;lder classes. On the other hand, the 1976 celebrated work of Rothschild and Stein on their lifting theorem established the central position of stratified nilpotent Lie groups (nowadays known as Carnot groups) in the analysis of H & ouml;rmander operators but, to present date, there exists no known counterpart of Jerison's results in these sub-Riemannian ambients. In this paper we fill this gap. We prove optimal Gamma k,alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma <^>{k,\alpha }$$\end{document}(k >= 2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k\ge 2)$$\end{document} Schauder estimates near a Ck,alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C<^>{k,\alpha }$$\end{document} non-characteristic portion of the boundary for Gamma k-2,alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma <^>{k-2, \alpha }$$\end{document} perturbations of horizontal Laplacians in Carnot groups.
引用
收藏
页码:6013 / 6047
页数:35
相关论文
共 37 条
[1]   Schauder estimates at the boundary for sub-laplacians in Carnot groups [J].
Baldi, Annalisa ;
Citti, Giovanna ;
Cupini, Giovanni .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (06)
[2]  
Banerjee A, 2019, CALC VAR PARTIAL DIF, V58, DOI 10.1007/s00526-019-1531-2
[3]  
Bonfiglioli A, 2007, SPRINGER MONOGR MATH, P3
[4]   Maximum principle and propagation for intrinsicly regular solutions of differential inequalities structured on vector fields [J].
Bonfiglioli, Andrea ;
Uguzzoni, Francesco .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 322 (02) :886-900
[5]   INTERIOR A PRIORI ESTIMATES FOR SOLUTIONS OF FULLY NON-LINEAR EQUATIONS [J].
CAFFARELLI, LA .
ANNALS OF MATHEMATICS, 1989, 130 (01) :189-213
[6]   Properties of harmonic measures in the Dirichlet problem for nilpotent Lie groups of Heisenberg type [J].
Capogna, L ;
Garofalo, N ;
Nhieu, DM .
AMERICAN JOURNAL OF MATHEMATICS, 2002, 124 (02) :273-306
[7]   Boundary behavior of nonnegative solutions of subelliptic equations in NTA domains for Carnot-Caratheodory metrics [J].
Capogna, L ;
Garofalo, N .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1998, 4 (4-5) :403-432
[8]  
Capogna L., 2008, P S PURE MATH, V79, P49, DOI DOI 10.1090/pspum/079/2500489
[9]  
Capogna L., 2003, HARMONIC ANAL MOUNT
[10]  
CARTAN E, 1928, P INT C MATH, V4, P253