Fixed point results in soft probabilistic metric spaces

被引:0
作者
Sonam [1 ]
Bhardwaj, Ramakant [1 ]
Mal, Josika [1 ]
Konar, Pulak [2 ]
Sumalai, Phumin [3 ]
机构
[1] Amity Univ, Dept Math, Kolkata 700135, West Bengal, India
[2] VIT Chennai Campus, Dept Math, Vandalur Kelambakkam Rd, Chennai 600127, Tamil Nadu, India
[3] Muban Chombueng Rajabhat Univ, Fac Sci & Technol, Dept Math, Chom Bueng 70150, Ratchaburi, Thailand
关键词
Probabilistic metric space; Soft sets; Soft topological space; Fixed points; Menger space;
D O I
10.1007/s41478-024-00800-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This research work introduces and explores the notion of soft probabilistic metric spaces, drawing from the principles of soft sets and classical probabilistic metric spaces. It delves into the essential topological characteristics of soft probabilistic metric spaces, such as the space of soft distribution functions, soft strong neighbourhood systems, and the soft Levy metric. These insights contribute to the conceptualization of various topological structures within this generalized framework of metric spaces. We establish a generalized version of conventional set and probabilistic metric spaces. To support this new concept of soft probabilistic metric spaces, we provide relevant illustrations. Furthermore, the study establishes several fixed point results within the realm of soft probabilistic metric spaces.
引用
收藏
页码:139 / 166
页数:28
相关论文
共 26 条
  • [1] On some new operations in soft set theory
    Ali, M. Irfan
    Feng, Feng
    Liu, Xiaoyan
    Min, Won Keun
    Shabir, M.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 57 (09) : 1547 - 1553
  • [2] Soft partial metric spaces
    Altintas, Ismet
    Taskopru, Kemal
    Esengul Kyzy, Peyil
    [J]. SOFT COMPUTING, 2022, 26 (18) : 8997 - 9010
  • [3] A Study on Soft S-Metric Spaces
    Aras, Cigdem Gunduz
    Bayramov, Sadi
    Cafarli, Vefa
    [J]. COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2018, 9 (04): : 713 - 723
  • [4] Banach S., 1922, Fundamenta Mathematicae, V3, P133, DOI [10.4064/fm-3-1-133-181, DOI 10.4064/FM-3-1-133-181]
  • [5] Beaula T., 2014, MALAYA J MATH, V2, P197, DOI [10.26637/mjm203/003, DOI 10.26637/MJM203/003]
  • [6] Chaudhary AK., 2019, AM J MATH STAT, V9, P199
  • [7] Das S., 2012, J FUZZY MATH, V20, P551
  • [8] Das S., 2013, Ann. Fuzzy Math. Inform., V6, P77
  • [9] A fixed point theorem on soft G-metric spaces
    Guler, Aysegul Caksu
    Yildirim, Esra Dalan
    Ozbakir, Oya Bedre
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (03): : 885 - 894
  • [10] Hadzic O., 2001, FIXED POINT THEORY P, DOI [10.1007/978-94-017-1560-7, DOI 10.1007/978-94-017-1560-7]