Artificial Protozoa Optimizer (APO): A novel bio-inspired metaheuristic algorithm for engineering optimization

被引:33
作者
Wang, Xiaopeng [1 ]
Snasel, Vaclav [1 ]
Mirjalili, Seyedali [2 ]
Pan, Jeng-Shyang [3 ]
Kong, Lingping [1 ]
Shehadeh, Hisham A. [4 ]
机构
[1] VSB Tech Univ Ostrava, Fac Elect Engn & Comp Sci, Ostrava 70800, Czech Republic
[2] Torrens Univ Australia, Ctr Artificial Intelligence Res & Optimisat, Brisbane 4006, Australia
[3] Nanjing Univ Informat Sci & Technol, Sch Artificial Intelligence, Nanjing 210044, Peoples R China
[4] Amman Arab Univ, Coll Comp Sci & Informat, Amman 11953, Jordan
关键词
Metaheuristic algorithm; Artificial protozoa optimizer; Constrained optimization; Engineering design; Image segmentation; IMAGE QUALITY ASSESSMENT; ENTROPY; EVOLUTIONARY;
D O I
10.1016/j.knosys.2024.111737
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This study proposes a novel artificial protozoa optimizer (APO) that is inspired by protozoa in nature. The APO mimics the survival mechanisms of protozoa by simulating their foraging, dormancy, and reproductive behaviors. The APO was mathematically modeled and implemented to perform the optimization processes of metaheuristic algorithms. The performance of the APO was verified via experimental simulations and compared with 32 state-of-the-art algorithms. Wilcoxon signed-rank test was performed for pairwise comparisons of the proposed APO with the state-of-the-art algorithms, and Friedman test was used for multiple comparisons. First, the APO was tested using 12 functions of the 2022 IEEE Congress on Evolutionary Computation benchmark. Considering practicality, the proposed APO was used to solve five popular engineering design problems in a continuous space with constraints. Moreover, the APO was applied to solve a multilevel image segmentation task in a discrete space with constraints. The experiments confirmed that the APO could provide highly competitive results for optimization problems. The source codes of Artificial Protozoa Optimizer are publicly available at https://seyedalimirjalili.com/projects and https://ww2.mathworks.cn/matlabcentral/ fileexchange/162656-artificial-protozoa-optimizer.
引用
收藏
页数:20
相关论文
共 96 条
  • [1] Nutcracker optimizer: A novel nature-inspired metaheuristic algorithm for global optimization and engineering design problems
    Abdel-Basset, Mohamed
    Mohamed, Reda
    Jameel, Mohammed
    Abouhawwash, Mohamed
    [J]. KNOWLEDGE-BASED SYSTEMS, 2023, 262
  • [2] Mountain Gazelle Optimizer: A new Nature-inspired Metaheuristic Algorithm for Global Optimization Problems
    Abdollahzadeh, Benyamin
    Gharehchopogh, Farhad Soleimanian
    Khodadadi, Nima
    Mirjalili, Seyedali
    [J]. ADVANCES IN ENGINEERING SOFTWARE, 2022, 174
  • [3] Meta-heuristic optimization algorithms for solving real-world mechanical engineering design problems: a comprehensive survey, applications, comparative analysis, and results
    Abualigah, Laith
    Abd Elaziz, Mohamed
    Khasawneh, Ahmad M.
    Alshinwan, Mohammad
    Ibrahim, Rehab Ali
    Al-qaness, Mohammed A. A.
    Mirjalili, Seyedali
    Sumari, Putra
    Gandomi, Amir H.
    [J]. NEURAL COMPUTING & APPLICATIONS, 2022, 34 (06) : 4081 - 4110
  • [4] Reptile Search Algorithm (RSA): A nature-inspired meta-heuristic optimizer
    Abualigah, Laith
    Abd Elaziz, Mohamed
    Sumari, Putra
    Geem, Zong Woo
    Gandomi, Amir H.
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2022, 191
  • [5] Aquila Optimizer: A novel meta-heuristic optimization algorithm
    Abualigah, Laith
    Yousri, Dalia
    Abd Elaziz, Mohamed
    Ewees, Ahmed A.
    Al-qaness, Mohammed A. A.
    Gandomi, Amir H.
    [J]. COMPUTERS & INDUSTRIAL ENGINEERING, 2021, 157 (157)
  • [6] The Arithmetic Optimization Algorithm
    Abualigah, Laith
    Diabat, Ali
    Mirjalili, Seyedali
    Elaziz, Mohamed Abd
    Gandomi, Amir H.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 376
  • [7] Dwarf Mongoose Optimization Algorithm
    Agushaka, Jeffrey O.
    Ezugwu, Absalom E.
    Abualigah, Laith
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 391
  • [8] Hippopotamus optimization algorithm: a novel nature-inspired optimization algorithm
    Amiri, Mohammad Hussein
    Hashjin, Nastaran Mehrabi
    Montazeri, Mohsen
    Mirjalili, Seyedali
    Khodadadi, Nima
    [J]. SCIENTIFIC REPORTS, 2024, 14 (01)
  • [9] [Anonymous], 1997, Tabu Search
  • [10] Archana G, 2022, Adv. Eng. Softw., V173