The uniruledness of the Prym moduli space of genus 9

被引:0
作者
Farkas, Gavril [1 ]
Verra, Alessandro [2 ]
机构
[1] Humboldt Univ, Inst Math, Unter Linden 6, D-10099 Berlin, Germany
[2] Univ Roma Tre, Dipartimento Matemat, Largo San Leonardo Murialdo 1, I-00146 Rome, Italy
基金
欧洲研究理事会;
关键词
Prym varieties; Moduli space of Prym varieties; Uniruled variety; Kodaira dimension; KODAIRA DIMENSION; CURVES; VARIETIES; UNIRATIONALITY; RATIONALITY; DIVISORS;
D O I
10.1016/j.aim.2024.109678
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the moduli space R 9 of Prym curves of genus 9 is uniruled. This is the largest genus for which such a result is known to hold. (c) 2024 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons .org /licenses /by /4 .0/).
引用
收藏
页数:19
相关论文
共 31 条
[1]  
Arbarello E, 2011, GRUNDLEHR MATH WISS, V268, P1, DOI 10.1007/978-3-540-69392-5_1
[2]  
Ballico E., 2004, Doc. Math., V9, P265
[3]   PRYM VARIETIES AND SCHOTTKY PROBLEM [J].
BEAUVILLE, A .
INVENTIONES MATHEMATICAE, 1977, 41 (02) :149-196
[4]  
Boucksom S, 2013, J ALGEBRAIC GEOM, V22, P201
[5]   (R)over-bar15 is of general type [J].
Bruns, Gregor .
Algebra & Number Theory, 2016, 10 (09) :1949-1964
[6]   Extending the Prym map to toroidal compactifications of the moduli space of abelian varieties (with an appendix by Mathieu Dutour Sikiric) [J].
Casalaina-Martin, Sebastian ;
Grushevsky, Samuel ;
Hulek, Klaus ;
Laza, Radu ;
Sikiric, M. Dutour .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2017, 19 (03) :659-723
[7]  
CATANESE F, 1983, LECT NOTES MATH, V1008, P30
[8]  
Chiodo A, 2013, INVENT MATH, V194, P73, DOI 10.1007/s00222-012-0441-0
[9]  
CORNALBA M, 1989, LECT RIEMANN SURFACE, P560
[10]  
Dolgachev IV, 2008, PURE APPL MATH Q, V4, P501