Common fixed points for ( κ G m )-contractions with applications

被引:1
作者
Ahmad, Jamshaid [1 ]
Shoaib, Abdullah [2 ]
Ayoob, Irshad [3 ]
Mlaiki, Nabil [3 ]
机构
[1] Univ Jeddah, Dept Math & Stat, POB 80327, Jeddah 21589, Saudi Arabia
[2] Riphah Int Univ, Dept Math & Stat, Islamabad, Pakistan
[3] Prince Sultan Univ, Dept Math & Sci, Riyadh 11586, Saudi Arabia
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 06期
关键词
G m-metric space; fixed point; ( kappa G m )-contraction; generalized ( alpha; kappa G m )-contraction; integral equation; THEOREMS; MAPPINGS;
D O I
10.3934/math.2024772
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this publication, our objective was to introduce and establish the concepts of kappa G m - contraction and generalized ( alpha, kappa G m )-contraction in complete G m -metric spaces, which led to the discovery of novel fixed points, coincidence points, and common fixed points. Additionally, we demonstrated the usefulness of our main results by applying it to the investigation of the integral equation. Also, we presenting a noteworthy example demonstrating the practicality of our primary hypothesis.
引用
收藏
页码:15949 / 15965
页数:17
相关论文
共 27 条
[1]   Unique Fixed-Point Results for β-Admissible Mapping under (β-ψ)-Contraction in Complete Dislocated Gd-Metric Space [J].
Al-Mazrooei, Abdullah Eqal ;
Shoaib, Abdullah ;
Ahmad, Jamshaid .
MATHEMATICS, 2020, 8 (09)
[2]  
Al-Rawashdeh A, 2016, BULL MATH ANAL APPL, V8, P12
[3]   G-β-ψ-contractive type mappings in G-metric spaces [J].
Alghamdi, Maryam A. ;
Karapinar, Erdal .
FIXED POINT THEORY AND APPLICATIONS, 2013,
[4]   COMMON FIXED POINT THEOREMS IN COMPLEX VALUED METRIC SPACES [J].
Azam, Akbar ;
Fisher, Brian ;
Khan, M. .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2011, 32 (03) :243-253
[5]  
Bakhtin I., 1989, Funct. Anal, V30, P26, DOI DOI 10.1039/AP9892600037
[6]  
Banach S., 1922, Fundam. Math, V3, P133, DOI DOI 10.4064/FM-3-1-133-181
[7]  
Frechet M., 1906, Rendiconti del Circolo Matematico di Palermo, V22, P1, DOI [DOI 10.1007/BF03018603, 10.1007/BF03018603]
[8]   ON A BROAD CATEGORY OF MULTIVALUED WEAKLY PICARD OPERATORS [J].
Hancer, Hatice Aslan ;
Minak, Gulhan ;
Altun, Ishak .
FIXED POINT THEORY, 2017, 18 (01) :229-236
[9]  
Jaradat MMM, 2017, DEMONSTR MATH, V50, P190, DOI 10.1515/dema-2017-0018
[10]  
Jiang S., 2016, Fixed Point Theory Appl, V2016, DOI [10.1186/s13663-016-0526-3, DOI 10.1186/S13663-016-0526-3]