l-adic digits and class number of imaginary quadratic fields

被引:0
作者
Pujahari, Sudhir [1 ]
Saikia, Neelam [2 ]
机构
[1] Natl Inst Sci Educ & Res Bhubaneswar, Sch Math Sci, PO Jatni, Bhubaneswar 752050, Odisha, India
[2] Indian Inst Technol Bhubaneswar, Sch Basic Sci, Argul 752050, Odisha, India
关键词
Digits; class numbers; generalized Bernoulli numbers; Dirichlet L-functions; equidistributions;
D O I
10.1142/S0129167X24500411
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Motivated by the work of [K. Girstmair, A "popular" class number formula, Amer. Math. Monthly 101(10) (1994) 997-1001; K. Girstmair, The digits of 1/p in connection with class number factors, Acta Arith. 67(4) (1994) 381-386] and [M. R. Murty and R. Thangadurai, The class number of Q(root - p) and digits of 1/p, Proc. Amer. Math. Soc. 139(4) (2010) 1277-1289], we study the average of the digits of the l-adic expansion of 1/n whenever n is a product of two distinct primes or a prime power. More explicitly, if l > 1 is an integer such that gcd(l, n) = 1, and suppose that 1/n = Sigma(8)(k=1) x(k)/l(k) is the l-adic expansion of 1/n, then we establish the average of the digits of the l-adic expansion of 1/n in terms of (l - 1)/2 and the "trace" of generalized Bernoulli numbers B-1,B-X, where.'s are odd Dirichlet characters modulo n. As a consequence of these results, we recover two well-known results of Gauss and Heilbronn (see Theorems 1.6 and 1.7).
引用
收藏
页数:16
相关论文
共 50 条
[31]   Continued Fractions and Gauss' Class Number Problem for Real Quadratic Fields [J].
Kawamoto, Fuminori ;
Tomita, Koshi .
TOKYO JOURNAL OF MATHEMATICS, 2012, 35 (01) :213-239
[32]   Counting imaginary quadratic fields with an ideal class group of 5-rank at least 2 [J].
Bartz, Kollin ;
Levin, Aaron ;
Thamminana, Aman Dhruva .
RAMANUJAN JOURNAL, 2025, 68 (01)
[33]   Quadratic equations over finite fields and class numbers of real quadratic fields [J].
Takashi Agoh ;
Toshiaki Shoji .
Monatshefte für Mathematik, 1998, 125 :279-292
[34]   Quadratic equations over finite fields and class numbers of real quadratic fields [J].
Agoh, T ;
Shoji, T .
MONATSHEFTE FUR MATHEMATIK, 1998, 125 (04) :279-292
[35]   A note on the existence of certain infinite families of imaginary quadratic fields [J].
Kimura, I .
ACTA ARITHMETICA, 2003, 110 (01) :37-43
[36]   THE IMAGINARY ABELIAN NUMBER FIELDS OF 2-POWER DEGREES WITH IDEAL CLASS GROUPS OF EXPONENT ≤ 2 [J].
Ahn, Jeoung-Hwan ;
Kwon, Soun-Hi .
MATHEMATICS OF COMPUTATION, 2012, 81 (277) :533-554
[37]   Quaternary quadratic lattices over number fields [J].
Kirschmer, Markus ;
Nebe, Gabriele .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2019, 15 (02) :309-325
[38]   ON HECKE MODULES GENERATED BY ETA-PRODUCTS AND IMAGINARY QUADRATIC FIELDS [J].
Ogasawara, Takeshi .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (01) :23-37
[39]   An infinite family of pairs of imaginary quadratic fields with ideal classes of a given order [J].
Komatsu, Toru .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2017, 13 (02) :253-260
[40]   A note on the divisibility of class numbers of real quadratic fields [J].
Yu, G .
JOURNAL OF NUMBER THEORY, 2002, 97 (01) :35-44