l-adic digits and class number of imaginary quadratic fields

被引:0
作者
Pujahari, Sudhir [1 ]
Saikia, Neelam [2 ]
机构
[1] Natl Inst Sci Educ & Res Bhubaneswar, Sch Math Sci, PO Jatni, Bhubaneswar 752050, Odisha, India
[2] Indian Inst Technol Bhubaneswar, Sch Basic Sci, Argul 752050, Odisha, India
关键词
Digits; class numbers; generalized Bernoulli numbers; Dirichlet L-functions; equidistributions;
D O I
10.1142/S0129167X24500411
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Motivated by the work of [K. Girstmair, A "popular" class number formula, Amer. Math. Monthly 101(10) (1994) 997-1001; K. Girstmair, The digits of 1/p in connection with class number factors, Acta Arith. 67(4) (1994) 381-386] and [M. R. Murty and R. Thangadurai, The class number of Q(root - p) and digits of 1/p, Proc. Amer. Math. Soc. 139(4) (2010) 1277-1289], we study the average of the digits of the l-adic expansion of 1/n whenever n is a product of two distinct primes or a prime power. More explicitly, if l > 1 is an integer such that gcd(l, n) = 1, and suppose that 1/n = Sigma(8)(k=1) x(k)/l(k) is the l-adic expansion of 1/n, then we establish the average of the digits of the l-adic expansion of 1/n in terms of (l - 1)/2 and the "trace" of generalized Bernoulli numbers B-1,B-X, where.'s are odd Dirichlet characters modulo n. As a consequence of these results, we recover two well-known results of Gauss and Heilbronn (see Theorems 1.6 and 1.7).
引用
收藏
页数:16
相关论文
共 50 条
[21]   On the p-ranks of the ideal class groups of imaginary quadratic fields [J].
Chattopadhyay, Jaitra ;
Saikia, Anupam .
RAMANUJAN JOURNAL, 2023, 62 (02) :571-581
[22]   Determination of class numbers of imaginary cyclic quartic number fields and cyclotomic fields [J].
Ram, Mahesh Kumar .
RAMANUJAN JOURNAL, 2025, 67 (01)
[23]   ONE-LEVEL DENSITY OF LOW-LYING ZFROS OF QUADRATIC HECKE L-FUNCTIONS OF IMAGINARY QUADRATIC NUMBER FIELDS [J].
Gao, Peng ;
Zhao, Liangyi .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2022, 112 (02) :170-192
[24]   Imaginary quadratic fields with class groups of 3-rank at least 2 [J].
Yu, Gang .
MANUSCRIPTA MATHEMATICA, 2020, 163 (3-4) :569-574
[25]   On the simultaneous 3-divisibility of class numbers of triples of imaginary quadratic fields [J].
Chattopadhyay, Jaitra ;
Muthukrishnan, Subramani .
ACTA ARITHMETICA, 2021, 197 (01) :105-110
[26]   CLASS NUMBER DIVISIBILITY IN REAL QUADRATIC FUNCTION-FIELDS [J].
FRIESEN, C .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1992, 35 (03) :361-370
[27]   THE CLASS NUMBER OF Q(√-p) AND DIGITS OF 1/p [J].
Murty, M. Ram ;
Thangadurai, R. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (04) :1277-1289
[28]   A note on the divisibility of class numbers of imaginary quadratic fields Q(√a2-kn) [J].
Ito, Akiko .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2011, 87 (09) :151-155
[29]   Imaginary Quadratic Fields With ℓ-Torsion-Free Class Groups and Specified Split Primes [J].
Beckwith, Olivia ;
Raum, Martin ;
Richter, Olav K. .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2024, :11582-11596
[30]   An infinite family of pairs of imaginary quadratic fields with both class numbers divisible by five [J].
Aoki, Miho ;
Kishi, Yasuhiro .
JOURNAL OF NUMBER THEORY, 2017, 176 :333-343