Accelerating Artificial Intelligence-based Whole Slide Image Analysis with an Optimized Preprocessing Pipeline

被引:0
作者
Hoerst, Fabian [1 ,2 ]
Schaheer, Sajad H. [1 ]
Baldini, Giulia [1 ]
Bahnsen, Fin H. [1 ]
Egger, Jan [1 ,2 ]
Kleesiek, Jens [1 ,2 ,3 ,4 ]
机构
[1] Univ Hosp Essen AoR, Inst Med, Essen, Germany
[2] Univ Hosp Essen AoR, Canc Res Ctr Cologne Essen, Essen, Germany
[3] German Canc Consortium, DKTK Partner Site Essen, Heidelberg, Germany
[4] TU Dortmund Univ, Dept Phys, Dortmund, Germany
来源
BILDVERARBEITUNG FUR DIE MEDIZIN 2024 | 2024年
关键词
D O I
10.1007/978-3-658-44037-4_91
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
As the field of digital pathology continues to advance, the computer-aided analysis of whole slide images (WSI) has become an essential component for cancer diagnosis, staging, biomarker prediction, and therapy evaluation. However, even with the latest hardware developments, the processing of entire slides still demands significant computational resources. Therefore, many WSI analysis pipelines rely on patch-wise processing by tessellating a WSI into smaller sections and aggregating the results to retrieve slide-level outputs. One commonality among all these algorithms is the necessity for WSI preprocessing to extract patches, with each algorithm having its own requirements such as sliding window extraction or extracting patches at multiple magnification levels. In this paper, we present a novel Python-based software framework that leverages NVIDIA's cuCIM library and parallelization to accelerate the preprocessing of WSIs, named PathoPatch. Compared to existing frameworks, we achieve a substantial reduction in processing time while maintaining or even improving the preprocessing capabilities. The code is available under https://github.com/TIO-IKIM/PathoPatcher
引用
收藏
页码:356 / 361
页数:6
相关论文
共 13 条
[1]   SliDL: A toolbox for processing whole-slide images in deep learning [J].
Berman, Adam G. ;
Orchard, William R. ;
Gehrung, Marcel ;
Markowetz, Florian .
PLOS ONE, 2023, 18 (08)
[2]  
Bradski G, 2000, DR DOBBS J, V25, P120
[3]  
Dusenberry M, 2019, Deep-histopath
[4]  
Goode Adam, 2013, J Pathol Inform, V4, P27, DOI 10.4103/2153-3539.119005
[5]  
Levy JJ, 2020, PACIFIC SYMPOSIUM ON BIOCOMPUTING 2020, P403
[6]   Data-efficient and weakly supervised computational pathology on whole-slide images [J].
Lu, Ming Y. ;
Williamson, Drew F. K. ;
Chen, Tiffany Y. ;
Chen, Richard J. ;
Barbieri, Matteo ;
Mahmood, Faisal .
NATURE BIOMEDICAL ENGINEERING, 2021, 5 (06) :555-+
[7]   A METHOD FOR NORMALIZING HISTOLOGY SLIDES FOR QUANTITATIVE ANALYSIS [J].
Macenko, Marc ;
Niethammer, Marc ;
Marron, J. S. ;
Borland, David ;
Woosley, John T. ;
Guan, Xiaojun ;
Schmitt, Charles ;
Thomas, Nancy E. .
2009 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1 AND 2, 2009, :1107-+
[8]   histolab: A Python']Python library for reproducible Digital Pathology preprocessing with automated testing [J].
Marcolini, Alessia ;
Bussola, Nicole ;
Arbitrio, Ernesto ;
Amgad, Mohamed ;
Jurman, Giuseppe ;
Furlanello, Cesare .
SOFTWAREX, 2022, 20
[9]  
Neuner C, 2023, WSI processing pipeline
[10]  
NVIDIA, 2023, cuCIM