Big field data-driven battery pack health estimation for electric vehicles: A deep-fusion transfer learning approach

被引:7
|
作者
Liu, Hongao [1 ]
Deng, Zhongwei [2 ]
Che, Yunhong [3 ]
Xu, Le [1 ]
Wang, Bing [4 ]
Wang, Zhenyu [4 ]
Xie, Yi [1 ]
Hu, Xiaosong [1 ]
机构
[1] Chongqing Univ, Coll Mech & Vehicle Engn, Chongqing 400044, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Mech & Elect Engn, Chengdu 611731, Peoples R China
[3] Aalborg Univ, DOE, DK-9220 Aalborg, Denmark
[4] China Automot Engn Res Inst Co Ltd, Chongqing 401122, Peoples R China
基金
中国国家自然科学基金;
关键词
Electric vehicles; Lithium -ion battery; State of health; Gaussian process regression; Transfer learning; USEFUL LIFE PREDICTION; STATE-OF-HEALTH; LITHIUM-ION BATTERIES; DEGRADATION;
D O I
10.1016/j.ymssp.2024.111585
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Accurate estimation of battery state of health (SOH) is significant to guide optimal electric vehicles (EVs) operating and maintenance. Regrettably, the SOH estimation based on real -world EVs' data is still not deep enough, and some methods developed in the laboratory are quite difficult to apply in practice. To bridge the gap, this paper proposes a novel battery SOH estimation framework for on -road EVs. Firstly, based on the open circuit voltage correction and working condition filtering, the labeled capacities of 707 real -world EVs in 3 years are extracted through the historical operating data. The mean absolute percentage error (MAPE) of the label capacity is validated to be less than 2.97 % with full charge and discharge tests. Subsequently, 22 health indicator (HI)points and 4 HI sequences are generated using partial charging data. Using the points -to -point and sequences -to -point methods, two frameworks are then established, which are a global SOH estimation framework targeting all EVs and a deep fusion transfer learning network (DFTN) to improve the SOH estimation of the single EV. The global framework adopts the Gaussian process regression (GPR) method and achieves an impressive MAPE of 2.07 % through 100 times repeated validation. In the DFTN framework, the average MAPE of SOH estimation for 30 testing vehicles is only 1.42 %, with the best -testing vehicle achieving a MAPE of 0.23 %.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] A Practical Data-Driven Battery State-of-Health Estimation for Electric Vehicles
    Rahimian, Saeed Khaleghi
    Tang, Yifan
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2023, 70 (02) : 1973 - 1982
  • [2] Battery pack capacity estimation for electric vehicles based on enhanced machine learning and field data
    Qi, Qingguang
    Liu, Wenxue
    Deng, Zhongwei
    Li, Jinwen
    Song, Ziyou
    Hu, Xiaosong
    JOURNAL OF ENERGY CHEMISTRY, 2024, 92 : 605 - 618
  • [3] Battery pack capacity estimation for electric vehicles based on enhanced machine learning and field data
    Qingguang Qi
    Wenxue Liu
    Zhongwei Deng
    Jinwen Li
    Ziyou Song
    Xiaosong Hu
    Journal of Energy Chemistry, 2024, 92 (05) : 605 - 618
  • [4] State of charge evaluation of battery in electric vehicles based on data-driven and model fusion approach
    Yun, Xiang
    Zhang, Xin
    Fan, Xingming
    ELECTRICAL ENGINEERING, 2023, 105 (5) : 3307 - 3318
  • [5] State of charge evaluation of battery in electric vehicles based on data-driven and model fusion approach
    Xiang Yun
    Xin Zhang
    Xingming Fan
    Electrical Engineering, 2023, 105 : 3307 - 3318
  • [6] Data-Driven Approaches for State-of-Charge Estimation in Battery Electric Vehicles Using Machine and Deep Learning Techniques
    El-Sayed, Ehab Issa
    ElSayed, Salah K.
    Alsharef, Mohammad
    SUSTAINABILITY, 2024, 16 (21)
  • [7] Data-Driven Ohmic Resistance Estimation of Battery Packs for Electric Vehicles
    Liang, Kaizhi
    Zhang, Zhaosheng
    Liu, Peng
    Wang, Zhenpo
    Jiang, Shangfeng
    ENERGIES, 2019, 12 (24)
  • [8] Comprehensive Review of Machine Learning, Deep Learning, and Digital Twin Data-Driven Approaches in Battery Health Prediction of Electric Vehicles
    Renold, A. Pravin
    Kathayat, Neeraj Singh
    IEEE ACCESS, 2024, 12 : 43984 - 43999
  • [9] Robust Data-Driven Battery State of Charge Estimation for Hybrid Electric Vehicles
    Feraco, Stefano
    Anselma, Pier Giuseppe
    Bonfitto, Angelo
    Kollmeyer, Phillip J.
    SAE INTERNATIONAL JOURNAL OF ELECTRIFIED VEHICLES, 2022, 11 (02): : 213 - 230
  • [10] Data-driven prediction of battery failure for electric vehicles
    Zhao, Jingyuan
    Ling, Heping
    Wang, Junbin
    Burke, Andrew F.
    Lian, Yubo
    ISCIENCE, 2022, 25 (04)