Predicting the recurrence of spontaneous intracerebral hemorrhage using a machine learning model

被引:1
作者
Cui, Chaohua [1 ]
Lan, Jiaona [1 ]
Lao, Zhenxian [1 ]
Xia, Tianyu [1 ]
Long, Tonghua [1 ]
机构
[1] Youjiang Med Univ Nationalities, Affiliated Hosp, Life Sci & Clin Med Res Ctr, Baise, Peoples R China
来源
FRONTIERS IN NEUROLOGY | 2024年 / 15卷
关键词
intracerebral hemorrhage; recurrence; predicting; model; machine learning;
D O I
10.3389/fneur.2024.1407014
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Background Recurrence can worsen conditions and increase mortality in ICH patients. Predicting the recurrence risk and preventing or treating these patients is a rational strategy to improve outcomes potentially. A machine learning model with improved performance is necessary to predict recurrence.Methods We collected data from ICH patients in two hospitals for our retrospective training cohort and prospective testing cohort. The outcome was the recurrence within one year. We constructed logistic regression, support vector machine (SVM), decision trees, Voting Classifier, random forest, and XGBoost models for prediction.Results The model included age, NIHSS score at discharge, hematoma volume at admission and discharge, PLT, AST, and CRP levels at admission, use of hypotensive drugs and history of stroke. In internal validation, logistic regression demonstrated an AUC of 0.89 and precision of 0.81, SVM showed an AUC of 0.93 and precision of 0.90, the random forest achieved an AUC of 0.95 and precision of 0.93, and XGBoost scored an AUC of 0.95 and precision of 0.92. In external validation, logistic regression achieved an AUC of 0.81 and precision of 0.79, SVM obtained an AUC of 0.87 and precision of 0.76, the random forest reached an AUC of 0.92 and precision of 0.86, and XGBoost recorded an AUC of 0.93 and precision of 0.91.Conclusion The machine learning models performed better in predicting ICH recurrence than traditional statistical models. The XGBoost model demonstrated the best comprehensive performance for predicting ICH recurrence in the external testing cohort.
引用
收藏
页数:8
相关论文
共 18 条
[1]   Cerebrovascular disease as the initial clinical presentation of haematological disorders [J].
Arboix, A ;
Besses, C .
EUROPEAN NEUROLOGY, 1997, 37 (04) :207-211
[2]   Predicting Early Seizures After Intracerebral Hemorrhage with Machine Learning [J].
Bunney, Gabrielle ;
Murphy, Julianne ;
Colton, Katharine ;
Wang, Hanyin ;
Shin, Hye Jung ;
Faigle, Roland ;
Naidech, Andrew M. .
NEUROCRITICAL CARE, 2022, 37 (SUPPL 2) :322-327
[3]   The machine learning methods to analyze the using strategy of antiplatelet drugs in ischaemic stroke patients with gastrointestinal haemorrhage [J].
Cui, Chaohua ;
Li, Changhong ;
Hou, Min ;
Wang, Ping ;
Huang, Zhonghua .
BMC NEUROLOGY, 2023, 23 (01)
[4]   The unsupervised machine learning to analyze the use strategy of statins for ischaemic stroke patients with elevated transaminase [J].
Cui, Chaohua ;
Li, Yuchuan ;
Liu, Shaohui ;
Wang, Ping ;
Huang, Zhonghua .
CLINICAL NEUROLOGY AND NEUROSURGERY, 2023, 232
[5]   Acute Spontaneous Lobar Cerebral Hemorrhages Present a Different Clinical Profile and a More Severe Early Prognosis than Deep Subcortical Intracerebral Hemorrhages-A Hospital-Based Stroke Registry Study [J].
de Mendiola, Joana Maria Flaquer-Perez ;
Arboix, Adria ;
Garcia-Eroles, Luis ;
Sanchez-Lopez, Maria Jose .
BIOMEDICINES, 2023, 11 (01)
[6]   C-Reactive-Protein Levels Associated with Infection Predict Short- and Long-Term Outcome after Supratentorial Intracerebral Hemorrhage [J].
Diedler, Jennifer ;
Sykora, Marek ;
Hahn, Philipp ;
Rupp, Andre ;
Rocco, Andrea ;
Herweh, Christian ;
Steiner, Thorsten .
CEREBROVASCULAR DISEASES, 2009, 27 (03) :272-279
[7]   End-of-life decisions in patients with severe acute brain injury [J].
Geurts, Marjolein ;
Macleod, Malcolm R. ;
van Thiel, Ghislaine J. M. W. ;
van Gijn, Jan ;
Kappelle, L. Jaap ;
van der Worp, H. Bart .
LANCET NEUROLOGY, 2014, 13 (05) :515-524
[8]   Identifying Modifiable Predictors of Patient Outcomes After Intracerebral Hemorrhage with Machine Learning [J].
Hall, Andrew N. ;
Weaver, Bradley ;
Liotta, Eric ;
Maas, Matthew B. ;
Faigle, Roland ;
Mroczek, Daniel K. ;
Naidech, Andrew M. .
NEUROCRITICAL CARE, 2021, 34 (01) :73-84
[9]   Guidelines for the Management of Spontaneous Intracerebral Hemorrhage A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association [J].
Hemphill, J. Claude, III ;
Greenberg, Steven M. ;
Anderson, Craig S. ;
Becker, Kyra ;
Bendok, Bernard R. ;
Cushman, Mary ;
Fung, Gordon L. ;
Goldstein, Joshua N. ;
Macdonald, R. Loch ;
Mitchell, Pamela H. ;
Scott, Phillip A. ;
Selim, Magdy H. ;
Woo, Daniel .
STROKE, 2015, 46 (07) :2032-2060
[10]   Predictors for Recurrent Primary Intracerebral Hemorrhage A Retrospective Population-based Study [J].
Huhtakangas, Juha ;
Lopponen, Pekka ;
Tetri, Sami ;
Juvela, Seppo ;
Saloheimo, Pertti ;
Bode, Michaela K. ;
Hillbom, Matti .
STROKE, 2013, 44 (03) :585-590