Fast physical reservoir computing, achieved with nonlinear interfered spin waves

被引:2
作者
Namiki, Wataru [1 ]
Nishioka, Daiki [1 ,2 ]
Tsuchiya, Takashi [1 ]
Terabe, Kazuya [1 ]
机构
[1] Natl Inst Mat Sci, Res Ctr Mat Nanoarchitecton, Ibaraki, Japan
[2] Tokyo Univ Sci, Dept Appl Phys, Tokyo, Japan
来源
NEUROMORPHIC COMPUTING AND ENGINEERING | 2024年 / 4卷 / 02期
基金
日本学术振兴会;
关键词
Reservoir computing; spin wave interference; artificial intelligence; MEMRISTORS;
D O I
10.1088/2634-4386/ad561a
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Reservoir computing is a promising approach to implementing high-performance artificial intelligence that can process input data at lower computational costs than conventional artificial neural networks. Although reservoir computing enables real-time processing of input time-series data on artificial intelligence mounted on terminal devices, few physical devices are capable of high-speed operation for real-time processing. In this study, we introduce spin wave interference with a stepped input method to reduce the operating time of the physical reservoir, and second-order nonlinear equation task and second-order nonlinear autoregressive mean averaging, which are well-known benchmark tasks, were carried out to evaluate the operating speed and prediction accuracy of said physical reservoir. The demonstrated reservoir device operates at the shortest operating time of 13 ms/5000-time steps, compared to other compact reservoir devices, even though its performance is higher than or comparable to such physical reservoirs. This study is a stepping stone toward realizing an artificial intelligence device capable of real-time processing on terminal devices.
引用
收藏
页数:14
相关论文
共 63 条
[1]   Performance of reservoir computing in a random network of single-walled carbon nanotubes complexed with polyoxometalate [J].
Akai-Kasaya, Megumi ;
Takeshima, Yuki ;
Kan, Shaohua ;
Nakajima, Kohei ;
Oya, Takahide ;
Asai, Tetsuya .
NEUROMORPHIC COMPUTING AND ENGINEERING, 2022, 2 (01)
[2]   Input-driven bifurcations and information processing capacity in spintronics reservoirs [J].
Akashi, Nozomi ;
Yamaguchi, Terufumi ;
Tsunegi, Sumito ;
Taniguchi, Tomohiro ;
Nishida, Mitsuhiro ;
Sakurai, Ryo ;
Wakao, Yasumichi ;
Nakajima, Kohei .
PHYSICAL REVIEW RESEARCH, 2020, 2 (04)
[3]   Information processing using a single dynamical node as complex system [J].
Appeltant, L. ;
Soriano, M. C. ;
Van der Sande, G. ;
Danckaert, J. ;
Massar, S. ;
Dambre, J. ;
Schrauwen, B. ;
Mirasso, C. R. ;
Fischer, I. .
NATURE COMMUNICATIONS, 2011, 2
[4]   Constructing optimized binary masks for reservoir computing with delay systems [J].
Appeltant, Lennert ;
Van der Sande, Guy ;
Danckaert, Jan ;
Fischer, Ingo .
SCIENTIFIC REPORTS, 2014, 4
[5]   New results on recurrent network training: Unifying the algorithms and accelerating convergence [J].
Atiya, AF ;
Parlos, AG .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2000, 11 (03) :697-709
[6]   Microfabricated Neuroaccelerometer: Integrating Sensing and Reservoir Computing in MEMS [J].
Barazani, Bruno ;
Dion, Guillaume ;
Morissette, Jean-Francois ;
Beaudoin, Louis ;
Sylvestre, Julien .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2020, 29 (03) :338-347
[7]   Magnon transistor for all-magnon data processing [J].
Chumak, Andrii V. ;
Serga, Alexander A. ;
Hillebrands, Burkard .
NATURE COMMUNICATIONS, 2014, 5
[8]   Reservoir computing using dynamic memristors for temporal information processing [J].
Du, Chao ;
Cai, Fuxi ;
Zidan, Mohammed A. ;
Ma, Wen ;
Lee, Seung Hwan ;
Lu, Wei D. .
NATURE COMMUNICATIONS, 2017, 8
[9]   Fully analogue photonic reservoir computer [J].
Duport, Francois ;
Smerieri, Anteo ;
Akrout, Akram ;
Haelterman, Marc ;
Massar, Serge .
SCIENTIFIC REPORTS, 2016, 6
[10]   Passive frustrated nanomagnet reservoir computing [J].
Edwards, Alexander J. ;
Bhattacharya, Dhritiman ;
Zhou, Peng ;
McDonald, Nathan R. ;
Al Misba, Walid ;
Loomis, Lisa ;
Garcia-Sanchez, Felipe ;
Hassan, Naimul ;
Hu, Xuan ;
Chowdhury, Md. Fahim ;
Thiem, Clare D. ;
Atulasimha, Jayasimha ;
Friedman, Joseph S. .
COMMUNICATIONS PHYSICS, 2023, 6 (01)